Bayesian Analysis

Contributed Discussion on Article by Pratola

Oksana A. Chkrebtii, Scotland Leman, Andrew Hoegh, Reihaneh Entezari, Radu V. Craiu, Jeffrey S. Rosenthal, Abdolreza Mohammadi, Maurits Kaptein, Luca Martino, Rafael B. Stern, and Francisco Louzada

Full-text: Open access

Article information

Source
Bayesian Anal. Volume 11, Number 3 (2016), 929-943.

Dates
First available in Project Euclid: 2 September 2016

Permanent link to this document
http://projecteuclid.org/euclid.ba/1472829062

Digital Object Identifier
doi:10.1214/16-BA999H

Mathematical Reviews number (MathSciNet)
MR3543915

Keywords
population Markov chain Monte Carlo model selection Bayesian treed regression Bayesian Regression Trees (BART) big data communication-free Markov chain Monte Carlo (MCMC) Markov chain Monte Carlo birth–death process continuous time Markov process Bayesian regression tree Bayesian regression tree (BRT) models Markov Chain Monte Carlo (MCMC) Multiple Try Metropolis algorithms Sequential Monte Carlo methods

Citation

Chkrebtii, Oksana A.; Leman, Scotland; Hoegh, Andrew; Entezari, Reihaneh; Craiu, Radu V.; Rosenthal, Jeffrey S.; Mohammadi, Abdolreza; Kaptein, Maurits; Martino, Luca; Stern, Rafael B.; Louzada, Francisco. Contributed Discussion on Article by Pratola. Bayesian Anal. 11 (2016), no. 3, 929--943. doi:10.1214/16-BA999H. http://projecteuclid.org/euclid.ba/1472829062.


Export citation

References

  • Chipman, H., George, E., and McCulloch, R. (2010). “BART: Bayesian Additive Regression Trees.” The Annals of Applied Statistics, 4(1): 266–298.
  • Geyer, C. (1991). “Markov chain Monte Carlo maximum likelihood.” In Computing Science and Statistics, Proceedings of the 23rd Symposium on the Interface, 156. American Statistical Association.
  • Gramacy, R. and Lee, H. (2008). “Bayesian Treed Gaussian Process Models with an Application to Computer Modeling.” Journal of the American Statistical Association, 103(483): 1119–1130.
  • Pratola, M. T. (2016). “Efficient Metropolis–Hastings Proposal Mechanisms for Bayesian Regression Tree Models.” Bayesian Analysis.
  • Wu, Y., Tjelmeland, H., and West, M. (2007). “Bayesian CART: Prior Specification and Posterior Simulation.” Journal of Computational and Graphical Statistics, 16(1): 44–66.
  • Chipman, H., George, E., and McCulloch, R. (1998). “Bayesian CART Model Search (with discussion).” Journal of the American Statistical Association, 94(443): 935–948.
  • Chipman, H., George, E., and McCulloch, R. (2010). “BART: Bayesian Additive Regression Trees.” The Annals of Applied Statistics, 4(1): 266–298.
  • Gramacy, R. and Lee, H. (2008). “Bayesian Treed Gaussian Process Models With an Application to Computer Modeling.” Journal of the American Statistical Association, 103(483): 1119–1130.
  • Kim, H. and MacEachern, S. (2015). “The Generalized Multiset Sampler.” Journal of Computational and Graphical Statistics, 24(4): 1134–1154.
  • Leman, S., Chen, Y., and Lavine, M. (2009). “The Multiset Sampler.” Journal of the American Statistical Association, 104(487): 1029–1041.
  • Chipman, H. A., George, E. I., and McCulloch, R. E. (1998). “Bayesian CART Model Search.” Journal of the American Statistical Association, 93(443): 935–948.
  • Chipman, H. A., George, E. I., and McCulloch, R. E. (2010). “BART: Bayesian Additive Regression Trees.” The Annals of Applied Statistics, 266–298.
  • Entezari, R., Craiu, R. V., and Rosenthal, J. S. (2016). “Likelihood Inflating Sampling Algorithm.” arXiv:1605.02113.
  • Friedman, J. H. (1991). “Multivariate Adaptive Regression Splines.” Annals of Statistics, 1–67.
  • Kapelner, A. and Bleich, J. (2013). “bartMachine: Machine Learning with Bayesian Additive Regression Trees.” arXiv:1312.2171.
  • Pratola, M. T. (2016). “Efficient Metropolis–Hastings Proposal Mechanisms for Bayesian Regression Tree Models.” Bayesian Analysis.
  • Cappé, O., Robert, C., and Rydén, T. (2003). “Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(3): 679–700.
  • Green, P. J. (1995). “Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.” Biometrika, 82(4): 711–732.
  • Mohammadi, A. and Wit, E. C. (2015). “Bayesian structure learning in sparse Gaussian graphical models.” Bayesian Analysis, 10(1): 109–138.
  • Mohammadi, A. and Wit, E. C. (2016). “BDgraph: An R package for Bayesian structure learning in graphical models.” Journal of Statistical Software, in press.
  • Mohammadi, A., Salehi-Rad, M., and Wit, E. (2013). “Using mixture of Gamma distributions for Bayesian analysis in an M/G/1 queue with optional second service.” Computational Statistics, 28(2): 683–700.
  • Mohammadi, A., Abegaz Yazew, F., van den Heuvel, E., and Wit, E. C. (2017). “Bayesian modeling of Dupuytren disease using Gaussian copula graphical models.” Journal of the Royal Statistical Society: Series C (Applied Statistics), in press.
  • Stephens, M. (2000). “Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods.” Annals of statistics, 40–74.
  • Andrieu, C., Doucet, A., and Holenstein, R. (2010). “Particle Markov Chain Monte Carlo Methods.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3): 269–342.
  • Casarin, R., Craiu, R. V., and Leisen, F. (2011). “Interacting Multiple Try Algorithms with Different Proposal Distributions.” Statistics and Computing 23(2): 185–200.
  • Haario, H., Saksman, E., and Tamminen, J. (2001). “An Adaptive Metropolis Algorithm.” Bernoulli, 7(2): 223–242.
  • Haario, H., Saksman, E., and Tamminen, J. (2005). “Componentwise Adaptation for High Dimensional MCMC.” Computational Statistics, 20(2): 265–273.
  • Liu, J. S., Liang, F., and Wong, W. H. (2000). “The Multiple-Try Method and Local Optimization in Metropolis Sampling.” Journal of the American Statistical Association, 95(449): 121–134.
  • Martino, L. and Read, J. (2013). “On the Flexibility of the Design of Multiple Try Metropolis Schemes.” Computational Statistics, 28(6): 2797–2823.
  • Martino, L. and Louzada, F. (2016). “Issues in the Multiple Try Metropolis Mixing.” Computational Statistics, 14 pages, in press.
  • Martino, L., Olmo, V. P. D., and Read, J. (2012). “A Multi-Point Metropolis Scheme with Generic Weight Functions.” Statistics & Probability Letters, 82(7): 1445–1453.
  • Martino, L., Leisen, F., and Corander, J. (2014). “On Multiple Try Schemes and the Particle Metropolis–Hastings Algorithm.” viXra:1409.0051.
  • Naesseth, C. A., Lindsten, F., and Schon, T. B. (2015). “Nested Sequential Monte Carlo Methods.” Proceedings of the International Conference on Machine Learning (JMLR).
  • Qin, Z. S. and Liu, J. S. (2001). “Multi-Point Metropolis Method with Application to Hybrid Monte Carlo.” Journal of Computational Physics, 172: 827–840.
  • Stern, R. B. (2015). “A Statistical Contribution to Historical Linguistics.” Ph.D. thesis, Carnegie Mellon University.
  • Wang, L. (2012). “Bayesian Phylogenetic Inference via Monte Carlo Methods.” Ph.D. thesis, University of British Columbia.

See also

  • Related item: Matthew T. Pratola (2016). Efficient Metropolis–Hastings Proposal Mechanisms for Bayesian Regression Tree Models. Bayesian Anal. Vol. 11, Iss. 3, 885–911.