Open Access
June 2017 Bayesian Inference for Diffusion-Driven Mixed-Effects Models
Gavin A. Whitaker, Andrew Golightly, Richard J. Boys, Chris Sherlock
Bayesian Anal. 12(2): 435-463 (June 2017). DOI: 10.1214/16-BA1009

Abstract

Stochastic differential equations (SDEs) provide a natural framework for modelling intrinsic stochasticity inherent in many continuous-time physical processes. When such processes are observed in multiple individuals or experimental units, SDE driven mixed-effects models allow the quantification of both between and within individual variation. Performing Bayesian inference for such models using discrete-time data that may be incomplete and subject to measurement error is a challenging problem and is the focus of this paper. We extend a recently proposed MCMC scheme to include the SDE driven mixed-effects framework. Fundamental to our approach is the development of a novel construct that allows for efficient sampling of conditioned SDEs that may exhibit nonlinear dynamics between observation times. We apply the resulting scheme to synthetic data generated from a simple SDE model of orange tree growth, and real data on aphid numbers recorded under a variety of different treatment regimes. In addition, we provide a systematic comparison of our approach with an inference scheme based on a tractable approximation of the SDE, that is, the linear noise approximation.

Citation

Download Citation

Gavin A. Whitaker. Andrew Golightly. Richard J. Boys. Chris Sherlock. "Bayesian Inference for Diffusion-Driven Mixed-Effects Models." Bayesian Anal. 12 (2) 435 - 463, June 2017. https://doi.org/10.1214/16-BA1009

Information

Published: June 2017
First available in Project Euclid: 23 May 2016

zbMATH: 1384.62109
MathSciNet: MR3620740
Digital Object Identifier: 10.1214/16-BA1009

Keywords: linear noise approximation , Markov chain Monte Carlo , mixed-effects , modified innovation scheme , Stochastic differential equation

Vol.12 • No. 2 • June 2017
Back to Top