Bayesian Analysis
- Bayesian Anal.
- Volume 10, Number 1 (2015), 171-187.
Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian Computation
Fernando V. Bonassi and Mike West
Full-text: Open access
Abstract
Methods of approximate Bayesian computation (ABC) are increasingly used for analysis of complex models. A major challenge for ABC is over-coming the often inherent problem of high rejection rates in the accept/reject methods based on prior:predictive sampling. A number of recent developments aim to address this with extensions based on sequential Monte Carlo (SMC) strategies. We build on this here, introducing an ABC SMC method that uses data-based adaptive weights. This easily implemented and computationally trivial extension of ABC SMC can very substantially improve acceptance rates, as is demonstrated in a series of examples with simulated and real data sets, including a currently topical example from dynamic modelling in systems biology applications.
Article information
Source
Bayesian Anal. Volume 10, Number 1 (2015), 171-187.
Dates
First available in Project Euclid: 28 January 2015
Permanent link to this document
http://projecteuclid.org/euclid.ba/1422468427
Digital Object Identifier
doi:10.1214/14-BA891
Mathematical Reviews number (MathSciNet)
MR3420901
Keywords
complex modelling adaptive simulation dynamic bionetwork models importance sampling mixture model emulators
Citation
Bonassi, Fernando V.; West, Mike. Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian Computation. Bayesian Anal. 10 (2015), no. 1, 171--187. doi:10.1214/14-BA891. http://projecteuclid.org/euclid.ba/1422468427.
References
- Beaumont, M., Cornuet, J., Marin, J., and Robert, C. (2009). “Adaptive approximate Bayesian computation.” Biometrika, 96(4): 983–990.
- Beaumont, M., Zhang, W., and Balding, D. (2002). “Approximate Bayesian computation in population genetics.” Genetics, 162(4): 2025.
- Blum, M. G. B. and François, O. (2010). “Non-linear regression models for Approximate Bayesian Computation.” Statistics and Computing, 20: 63–73.Mathematical Reviews (MathSciNet): MR2578077
Digital Object Identifier: doi: 10.1007/s11222-009-9116-0 - Bonassi, F. V., You, L., and West, M. (2011). “Bayesian learning from marginal data in bionetwork models.” Statistical Applications in Genetics & Molecular Biology, 10: Art 49.
- Cameron, E. and Pettitt, A. (2012). “Approximate Bayesian Computation for astronomical model analysis: A case study in galaxy demographics and morphological transformation at high redshift.” Arxiv preprint arXiv:1202.1426.arXiv: 1202.1426
- Cornuet, J., Marin, J., Mira, A., and Robert, C. (2012). “Adaptive multiple importance sampling.” Scandinavian Journal of Statistics, 39(4): 798–812.Mathematical Reviews (MathSciNet): MR3000850
Digital Object Identifier: doi: 10.1111/j.1467-9469.2011.00756.x - Cron, A. J. and West, M. (2011). “Efficient classification-based relabeling in mixture models.” The American Statistician, 65: 16–20.Mathematical Reviews (MathSciNet): MR2899648
Digital Object Identifier: doi: 10.1198/tast.2011.10170 - Csilléry, K., Blum, M., Gaggiotti, O., and François, O. (2010). “Approximate Bayesian computation (ABC) in practice.” Trends in Ecology & Evolution, 25(7): 410–418.
- Del Moral, P., Doucet, A., and Jasra, A. (2006). “Sequential Monte Carlo samplers.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3): 411–436.Mathematical Reviews (MathSciNet): MR2278333
Digital Object Identifier: doi: 10.1111/j.1467-9868.2006.00553.x - — (2011). “An adaptive sequential Monte Carlo method for approximate Bayesian computation.” Statistics and Computing, 1–12.
- Fearnhead, P. and Prangle, D. (2012). “Constructing summary statistics for approximate Bayesian computation: Semi-automatic approximate Bayesian computation (with discussion).” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(3): 419–474.Mathematical Reviews (MathSciNet): MR2925370
Digital Object Identifier: doi: 10.1111/j.1467-9868.2011.01010.x - Filippi, S., Barnes, C. P., Cornebise, J., and Stumpf, M. P. (2013). “On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo.” Statistical Applications in Genetics and Molecular Biology, 12(1): 87–107.Mathematical Reviews (MathSciNet): MR3044402
Digital Object Identifier: doi: 10.1515/sagmb-2012-0069 - Fryer, M. (1977). “A review of some non-parametric methods of density estimation.” IMA Journal of Applied Mathematics, 20(3): 335–354.
- Gardner, T. S., Cantor, C. R., and Collins, J. J. (2000). “Construction of a genetic toggle switch in Escherichia coli.” Nature, 403: 339–342.
- Heggland, K. and Frigessi, A. (2004). “Estimating functions in indirect inference.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(2): 447–462.Mathematical Reviews (MathSciNet): MR2062387
Digital Object Identifier: doi: 10.1111/j.1369-7412.2003.05341.x - Lenormand, M., Jabot, F., and Deffuant, G. (2013). “Adaptive approximate Bayesian computation for complex models.” Computational Statistics, 28(6): 2777–2796.Mathematical Reviews (MathSciNet): MR3141363
Digital Object Identifier: doi: 10.1007/s00180-013-0428-3 - Liepe, J., Barnes, C., Cule, E., Erguler, K., Kirk, P., Toni, T., and Stumpf, M. P. (2010). “ABC-SysBio-approximate Bayesian computation in Python with GPU support.” Bioinformatics, 26(14): 1797–1799.
- Liu, J. (2001). Monte Carlo Strategies in Scientific Computing. Springer-Verlag.Mathematical Reviews (MathSciNet): MR1842342
- Liu, J. and West, M. (2001). “Combined parameter and state estimation in simulation-based filtering.” In Doucet, A., Freitas, J. D., and Gordon, N. (eds.), Sequential Monte Carlo Methods in Practice, 197–217. New York: Springer-Verlag.Mathematical Reviews (MathSciNet): MR1847793
Digital Object Identifier: doi: 10.1007/978-1-4757-3437-9_10 - Marjoram, P., Molitor, J., Plagnol, V., and Tavaré, S. (2003). “Markov chain Monte Carlo without likelihoods.” Proceedings of the National Academy of Sciences USA, 100: 15324–15328.
- McKinley, T., Cook, A., and Deardon, R. (2009). “Inference in epidemic models without likelihoods.” The International Journal of Biostatistics, 5(1).
- Pritchard, J., Seielstad, M., Perez-Lezaun, A., and Feldman, M. (1999). “Population growth of human Y chromosomes: a study of Y chromosome microsatellites.” Molecular Biology and Evolution, 16(12): 1791.
- Scott, D. and Sain, S. (2005). “Multidimensional density estimation.” Handbook of Statistics, 24: 229–261.
- Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley Series in Probability and Mathematical Statistics.Mathematical Reviews (MathSciNet): MR1191168
- Silk, D., Filippi, S., and Stumpf, M. P. (2013). “Optimizing threshold-schedules for sequential approximate Bayesian computation: applications to molecular systems.” Statistical applications in genetics and molecular biology, 12(5): 603–618.Mathematical Reviews (MathSciNet): MR3108049
Digital Object Identifier: doi: 10.1515/sagmb-2012-0043 - Silverman, B. (1986). Density estimation for statistics and data analysis, volume 26. Chapman & Hall/CRC.Mathematical Reviews (MathSciNet): MR848134
- Sisson, S. A., Fan, Y., and Tanaka, M. M. (2007). “Sequential Monte Carlo without likelihoods.” Proceedings of the National Academy of Sciences USA, 104: 1760–1765.Mathematical Reviews (MathSciNet): MR2301870
Digital Object Identifier: doi: 10.1073/pnas.0607208104 - — (2009). “Correction for Sisson et al., Sequential Monte Carlo without likelihoods.” Proceedings of the National Academy of Sciences, 106(39): 16889.
- Suchard, M. A., Wang, Q., Chan, C., Frelinger, J., Cron, A. J., and West, M. (2010). “Understanding GPU programming for statistical computation: Studies in massively parallel massive mixtures.” Journal of Computational and Graphical Statistics, 19: 419–438.Mathematical Reviews (MathSciNet): MR2758309
Digital Object Identifier: doi: 10.1198/jcgs.2010.10016 - Toni, T. and Stumpf, M. P. H. (2010). “Simulation-based model selection for dynamical systems in systems and population biology.” Bioinformatics, 26: 104–110.
- Toni, T., Welch, D., Strelkowa, N., Ipsen, A., and Stumpf, M. (2009). “Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems.” Journal of the Royal Society Interface, 6(31): 187–202.
- Turner, B. M. and Van Zandt, T. (2012). “A tutorial on approximate Bayesian computation.” Journal of Mathematical Psychology, 56(2): 69–85.Mathematical Reviews (MathSciNet): MR2909506
Digital Object Identifier: doi: 10.1016/j.jmp.2012.02.005 - West, M. (1992). “Modelling with mixtures (with discussion).” In Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M. (eds.), Bayesian Statistics 4, 503–524. Oxford University Press.Mathematical Reviews (MathSciNet): MR1380294
- — (1993a). “Approximating posterior distributions by mixtures.” Journal of the Royal Statistical Society: Series B (Statistical Methology), 54: 553–568.
- — (1993b). “Mixture models, Monte Carlo, Bayesian updating and dynamic models.” Computing Science and Statistics, 24: 325–333.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Likelihood-free estimation of model evidence
Didelot, Xavier, Everitt, Richard G., Johansen, Adam M., and Lawson, Daniel J., Bayesian Analysis, 2011 - An Adaptive Sequential Monte Carlo Sampler
Fearnhead, Paul and Taylor, Benjamin M., Bayesian Analysis, 2013 - Generalised linear mixed model analysis via sequential Monte Carlo sampling
Fan, Y., Leslie, D.S., and Wand, M.P., Electronic Journal of Statistics, 2008
- Likelihood-free estimation of model evidence
Didelot, Xavier, Everitt, Richard G., Johansen, Adam M., and Lawson, Daniel J., Bayesian Analysis, 2011 - An Adaptive Sequential Monte Carlo Sampler
Fearnhead, Paul and Taylor, Benjamin M., Bayesian Analysis, 2013 - Generalised linear mixed model analysis via sequential Monte Carlo sampling
Fan, Y., Leslie, D.S., and Wand, M.P., Electronic Journal of Statistics, 2008 - Adapting the ABC Distance Function
Prangle, Dennis, Bayesian Analysis, 2016 - Approximate Bayesian Computation by Modelling Summary Statistics in a Quasi-likelihood Framework
Cabras, Stefano, Castellanos Nueda, Maria Eugenia, and Ruli, Erlis, Bayesian Analysis, 2015 - Efficient MCMC for Climate Model Parameter Estimation: Parallel Adaptive Chains and Early Rejection
Solonen, Antti, Ollinaho, Pirkka, Laine, Marko, Haario, Heikki, Tamminen, Johanna, and Järvinen, Heikki, Bayesian Analysis, 2012 - On the convergence of adaptive sequential Monte Carlo methods
Beskos, Alexandros, Jasra, Ajay, Kantas, Nikolas, and Thiery, Alexandre, The Annals of Applied Probability, 2016 - Bayesian Indirect Inference Using a Parametric Auxiliary Model
Drovandi, Christopher C., Pettitt, Anthony N., and Lee, Anthony, Statistical Science, 2015 - Computational Discovery of Gene Regulatory Binding Motifs: A Bayesian Perspective
Jensen, Shane T., Liu, X. Shirley, Zhou, Qing, and Liu, Jun S., Statistical Science, 2004 - Sequentially interacting Markov chain Monte Carlo methods
Brockwell, Anthony, Del Moral, Pierre, and Doucet, Arnaud, The Annals of Statistics, 2010
