Bayesian Analysis

Comment on Article by Rubio and Steel

James G. Scott

Full-text: Open access

Article information

Source
Bayesian Anal. Volume 9, Number 1 (2014), 25-28.

Dates
First available in Project Euclid: 24 February 2014

Permanent link to this document
http://projecteuclid.org/euclid.ba/1393251766

Digital Object Identifier
doi:10.1214/13-BA867

Mathematical Reviews number (MathSciNet)
MR3188295

Zentralblatt MATH identifier
1327.62160

Citation

Scott, James G. Comment on Article by Rubio and Steel. Bayesian Anal. 9 (2014), no. 1, 25--28. doi:10.1214/13-BA867. http://projecteuclid.org/euclid.ba/1393251766.


Export citation

References

  • Berger, J., Pericchi, L., and Varshavsky, J. (1998). “Bayes factors and marginal distributions in invariant situations.” Sankhya, Series A, 60: 307–321.
  • Berger, J. O., Bernardo, J. M., and Sun, D. (2009). “The formal definition of reference priors.” The Annals of Statistics, 37(2): 905–38.
  • Bernardo, J. M. and Girón, F. (1988). “A Bayesian analysis of simple mixture problems.” In Bernardo, J. M., DeGroot, M. H., Lindley, D. V., and Smith, A. F. M. (eds.), Bayesian Statistics 3. Oxford University Press.
  • Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010). “The horseshoe estimator for sparse signals.” Biometrika, 97(2): 465–80.
  • Gelman, A. (2006). “Prior distributions for variance parameters in hierarchical models.” Bayesian Analysis, 1(3): 515–33.
  • Gelman, A., Jakulin, A., Pittau, M., and Su, Y. (2008). “A weakly informative default prior distribution for logistic and other regression models.” The Annals of Applied Statistics, 2(4): 1360–83.
  • Handcock, M. S. and Stein, M. (1993). “A Bayesian analysis of kriging.” Technometrics, 35: 403–10.
  • Neyman, J. and Scott, E. (1948). “Consistent estimates based on partially consistent observations.” Econometrica, 16.
  • Polson, N. G. and Scott, J. G. (2012). “On the half-Cauchy prior for a global scale parameter.” Bayesian Analysis, 7(4): 887–902.
  • — (2013). “Data augmentation for non-Gaussian regression models using variance-mean mixtures.” Biometrika, 100(2): 459–71.
  • Scott, J. G. and Berger, J. O. (2006). “An exploration of aspects of Bayesian multiple testing.” Journal of Statistical Planning and Inference, 136(7): 2144–2162.
  • Wasserman, L. (2000). “Asymptotic inference for mixture models by using data-dependent priors.” Journal of the Royal Statistical Society (Series B), 62: 159–80.

See also

  • Related item: Francisco J. Rubio, Mark F. J. Steel. Inference in Two-Piece Location-Scale Models with Jeffreys Priors. Bayesian Anal., Vol. 9, Iss. 1 (2014) 1–22.