Open Access
December 2012 On the Half-Cauchy Prior for a Global Scale Parameter
Nicholas G. Polson, James G. Scott
Bayesian Anal. 7(4): 887-902 (December 2012). DOI: 10.1214/12-BA730

Abstract

This paper argues that the half-Cauchy distribution should replace the inverse-Gamma distribution as a default prior for a top-level scale parameter in Bayesian hierarchical models, at least for cases where a proper prior is necessary. Our arguments involve a blend of Bayesian and frequentist reasoning, and are intended to complement the case made by Gelman (2006) in support of folded-t priors. First, we generalize the half-Cauchy prior to the wider class of hypergeometric inverted-beta priors. We derive expressions for posterior moments and marginal densities when these priors are used for a top-level normal variance in a Bayesian hierarchical model. We go on to prove a proposition that, together with the results for moments and marginals, allows us to characterize the frequentist risk of the Bayes estimators under all global-shrinkage priors in the class. These results, in turn, allow us to study the frequentist properties of the half-Cauchy prior versus a wide class of alternatives. The half-Cauchy occupies a sensible middle ground within this class: it performs well near the origin, but does not lead to drastic compromises in other parts of the parameter space. This provides an alternative, classical justification for the routine use of this prior. We also consider situations where the underlying mean vector is sparse, where we argue that the usual conjugate choice of an inverse-gamma prior is particularly inappropriate, and can severely distort inference. Finally, we summarize some open issues in the specification of default priors for scale terms in hierarchical models.

Citation

Download Citation

Nicholas G. Polson. James G. Scott. "On the Half-Cauchy Prior for a Global Scale Parameter." Bayesian Anal. 7 (4) 887 - 902, December 2012. https://doi.org/10.1214/12-BA730

Information

Published: December 2012
First available in Project Euclid: 27 November 2012

zbMATH: 1330.62148
MathSciNet: MR3000018
Digital Object Identifier: 10.1214/12-BA730

Keywords: hierarchical models , normal scale mixtures , shrinkage

Rights: Copyright © 2012 International Society for Bayesian Analysis

Vol.7 • No. 4 • December 2012
Back to Top