Bayesian Analysis

Geographically assisted elicitation of expert opinion for regression models

Robert Denham and Kerrie Mengersen

Full-text: Open access

Abstract

One of the perceived strengths of Bayesian modelling is the ability to include prior information. Although objective or noninformative priors might be preferred in some situations, in many other applications the Bayesian framework offers a real opportunity to formally combine data with information available from experts. The question addressed in this paper is how to elicit this information in a form suitable for prior modelling. Particular attention is paid to geographic data for which maps might be used to assist in the elicitation. Two case studies are used to illustrate the methodology: estimation of city house prices and prediction of presence of a rare species.

Article information

Source
Bayesian Anal. Volume 2, Number 1 (2007), 99-135.

Dates
First available in Project Euclid: 22 June 2012

Permanent link to this document
http://projecteuclid.org/euclid.ba/1340390065

Digital Object Identifier
doi:10.1214/07-BA205

Mathematical Reviews number (MathSciNet)
MR2289925

Zentralblatt MATH identifier
1331.62333

Subjects
Primary: Database Expansion Item

Keywords
elicitation expert opinion regression

Citation

Denham, Robert; Mengersen, Kerrie. Geographically assisted elicitation of expert opinion for regression models. Bayesian Anal. 2 (2007), no. 1, 99--135. doi:10.1214/07-BA205. http://projecteuclid.org/euclid.ba/1340390065.


Export citation

References

  • Albert, J. H. (1988). "Computational methods using a Bayesian hierarchical generalized linear model." Journal of the American Statistical Association, 83: 1037–1044.
  • Albert, J. H. and Chib, S. (1993). "Bayesian analysis of binary and polychotomous response data." Journal of the American Statistical Association, 88: 669–679.
  • Bedrick, E. J., Christensen, R., and Johnson, W. (1996). "A new perspective on priors for generalized linear models." Journal of the American Statistical Association, 91: 1450–1460.
  • –- (1997). "Bayesian binomial regression: Predicting survival at a trauma center." The American Statistician, 51: 211–218.
  • Bernardo, J. M. (1979). "Reference posterior distributions for Bayesian inference." Journal of the Royal Statistical Society. Series B. Statistical Methodology, 41: 113–147.
  • Bernardo, J. M. and Smith, A. F. M. (1994). Bayesian Theory. Chichester: Wiley.
  • Carter, K. and Goldizen, A. W. (2003). "Habitat choice and vigilance behaviour of brush-tailed rock-wallabies (Petrogale penicillata) within their nocturnal foraging ranges." Wildlife Research, 30: 355–364.
  • Chen, M. H. and Dey, D. K. (2003). "Variable selection for multivariate logistic regression models." Journal of Statistical Planning and Inference., 111: 37–55.
  • Chen, M. H., Ibrahim, J. G., Shao, Q. M., and Weiss, R. E. (2003). "Prior elicitation for model selection and estimation in generalized linear mixed models." Journal of Statistical Planning and Inference., 111: 57–76.
  • Chen, M. H., Ibrahim, J. G., and Yiannoutsos, C. (1999). "Prior elicitation, variable selection and Bayesian computation for logistic regression models." Journal of the Royal Statistical Society. Series B. Statistical Methodology, 61: 223–242.
  • Cooke, R. M. (1991). Experts in Uncertainty: Opinion and Subjective Probability in Science. New York: Oxford University Press.
  • Craig, P. S., Goldstein, M., Seheult, A. H., and Smith, J. A. (1998). "Constructing partial prior specifications for models of complex physical systems (Disc: p55-68)." The Statistician, 47: 37–53.
  • Eldridge, M. D. B. (1997). "Rock-wallaby conservation: essential data and management priorities. Proceedings of the 1994 National Rock-wallaby Symposium workshops." Australian Mammalogy, 19: 325–330.
  • Garthwaite, P. H. and Dickey, J. M. (1988). "Quantifying expert opinion in linear-regression problems." Journal of the Royal Statistical Society. Series B. Statistical Methodology, 50: 462–474.
  • Gavaris, S. and Ianelli, J. (2002). "Statistical issues in fisheries' stock assessments (with discussion)." Scandinavian Journal of Statistics, 29: 245–271.
  • Gelfand, A. E., Sahu, S. K., and Carlin, B. P. (1996). "Efficient parametrisations for generalized linear mixed models (with discussion)." In Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M. (eds.), Bayesian Statistics, volume 5, 165–180. Oxford: Oxford University Press.
  • Gibson, L. a., Wilson, B. A., Cahill, D. M., and Hill, J. (2004). "Spatial prediction of rufous bristlebird habitat in a coastal heathland: a GIS"-based approach. Journal of Applied Ecology, 41: 213–223.
  • Guisan, A. and Zimmermann, N. E. (2000). "Predictive habitat distribution models in ecology." Ecological Modelling, 135: 147–186.
  • Kadane, J. (1980). "Predictive and structural methods for eliciting prior distributions." In Zellner, A. (ed.), Bayesian Analysis in Econometrics and Statistics – Essays in Honor of Harold Jeffreys. Amsterdam: North Holland: North Holland Publishing Company.
  • Kadane, J. B., Dickey, J. M., Winkler, R. L., Smith, W. S., and Peters, S. C. (1980). "Interactive Elicitation of Opinion for a Normal Linear Model." Journal of the American Statistical Association, 75(372): 845–854.
  • Kadane, J. B. and Wolfson, L. J. (1998). "Experiences in elicitation." Journal of the Royal Statistical Society. Series D. The Statistician, 47: 3–19.
  • Kass, R. E. and Wasserman, L. (1996). "The selection of prior distributions by formal rules." Journal of the American Statistical Association, 91: 1343–1370.
  • Lindley, D. V., Tversky, A., and Brown, R. V. (1979). "On the reconciliation of probability assessments (with discussion)." Journal of the Royal Statistical Society. Series A. Statistics in Society, 142: 146–180.
  • Manel, S., Williams, H. C., and Ormerod, S. J. (2001). "Evaluating presence-absence models in ecology: the need to account for prevalence." Journal of Applied Ecology, 38: 921–931.
  • Maynes, G. M. and Sharman, G. B. (1983). "Brush-tailed Rock-Wallaby." In Strahan, R. (ed.), The Complete Book of Australian Mammals. Sydney: Angus and Robertson.
  • Morgan, M. G. and Henrion, M. (1990). Uncertainty: a Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis. New York: Cambridge University Press.
  • O'Hagan, A. (1998). "Eliciting expert beliefs in substantial practical applications." The Statistician, 47: 21–35.
  • Pearce, J. L., Cherry, K., Drielsma, M., Ferrier, S., and Whish, G. (2001). "Incorporating expert opinion and fine-scale vegetation mapping into statistical models of faunal distribution." Journal of Applied Ecology, 38: 412–424.
  • R Development Core Team (2004). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  • Store, R. and Kangas, J. (2001). "Integrating spatial multi-criteria evaluation and expert knowledge for GIS"-based habitat suitability modelling. Landscape and Urban Planning, 55: 79–93.
  • Tamis, W. L. M. and Van 't Zelfde, M. (1998). "An expert habitat suitability model for the disaggregation of bird survey data - Bird counts in the Netherlands downscaled from atlas block to kilometre cell." Landscape and Urban Planning, 40: 269–282.
  • Tversky, A. and Kahneman, D. (1974). "Judgement under uncertainty: heuristics and biases." Science, 185: 1124–1131.
  • Wallsten, T. S. and Budescu, D. V. (1982). "Encoding subjective probabilities: a psychological and psychometric review." Management Science, 29: 151–173.
  • West, M. (1985). "Generalized linear models: scale parameters, outlier accommodations and prior distributions." In Bernardo, J. M., DeGroot, M. H., Lindley, D. V., and Smith, A. F. M. (eds.), Bayesian Statistics, volume 2. Amsterdam: North-Holland.
  • West, M., Harrison, P. J., and Migon, H. S. (1985). "Dynamic generalized linear models and Bayesian forecasting (with discussion)." Journal of the American Statistical Association, 80: 73–97.
  • Wolfson, L. J. (1995). "Elicitation of priors and utilities for Bayesian analysis." Ph.D. thesis, Department of Statistics, Carnegie Mellon University, Pittsburgh.
  • Zeger, S. L. and Karim, M. R. (1991). "Generalized linear models with random effects; a Gibbs sampling approach." Journal of the American Statistical Association, 86: 79–86.
  • Zellner, A. and Rossi, P. E. (1991). "Bayesian analysis of dichotomous quantal response models." Journal of Econometrics, 25: 365–393.