Bayesian Analysis

Inferring climate system properties using a computer model

Chris E. Forest, Bruno Sansó, and Daniel Zantedeschi

Full-text: Open access

Abstract

A method is presented to estimate the probability distributions of climate system properties based on a hierarchical Bayesian model. At the base of the model, we use simulations of a climate model in which the outputs depend on the climate system properties and can also be compared with observations. The degree to which the model outputs are "consistent" with the observations is used to obtain the likelihood for the climate system properties. We define the climate system properties as those properties of the climate model that control the large-scale response of the climate system to external forcings. In this paper, we use the MIT 2D climate model (MIT2DCM) to provide simulations of ocean, surface and upper atmospheric temperature behavior over zones defined by latitude bands. In the MIT2DCM, the climate system properties can be set via three parameters: Climate sensitivity (the equilibrium surface temperature change in response to a doubling of CO2 concentrations), the rate of deep-ocean heat uptake (as set by the diffusion of temperature anomalies into the deep-ocean below the climatological mixed layer), and net strength of the anthropogenic aerosol forcings. In this work, we use output from MIT2DCM coupled with historical temperature records to make inference about these climate system properties. Even though the MIT2DCM is far less computationally demanding than a full 3D climate model, the task of running the model for each combination of the climate parameters and processing its output is computationally demanding. Thus, a statistical model is required to approximate the model output. We obtain results that are critical for understanding uncertainty in future climate change and provide an independent check that the information contained in recent climate change is robust to statistical treatment.

Article information

Source
Bayesian Anal. Volume 3, Number 1 (2008), 1-37.

Dates
First available in Project Euclid: 22 June 2012

Permanent link to this document
http://projecteuclid.org/euclid.ba/1340370557

Digital Object Identifier
doi:10.1214/08-BA301

Mathematical Reviews number (MathSciNet)
MR2383247

Citation

Sansó, Bruno; Forest, Chris E.; Zantedeschi, Daniel. Inferring climate system properties using a computer model. Bayesian Anal. 3 (2008), no. 1, 1--37. doi:10.1214/08-BA301. http://projecteuclid.org/euclid.ba/1340370557.


Export citation

References

  • Andronova, N. G. and Schlesinger, M. E. (2001) Objective estimation of the probability density function for climate sensitivity. J. Geophys. Res., 106, 22,605–22,612.
  • Berger, J., De Oliveira, V. and Sansó, B. (2001) Objective Bayesian analysis of spatially correlated data. Journal of the American Statistical Association, 96, 1361–1374.
  • Claussen, M., Mysak, L. A., Weaver, A. J., Crucifix, M., Fichefet, T., Loutre, M., Weber, S. L., Alcamo, J., Alexeev, V. A., Berger, A., Calov, R., Ganapolski, A., Goosse, H., Lohman, G., Lunkeit, F., Mokhov, I. I., Petoukhov, V., Stone, P. and Wang, Z. (2002) Earth system models of intermediate complexity: Closing the gap in the spectrum of climate system models. Clim. Dyn., 18, 579–586. DOI 10.1007/s00382-001-0200-1.
  • Curry, C., Sansó, B. and Forest, C. (2005) Inference for climate system properties. Tech. Rep. ams2005-13, Applied Mathematics and Statistics, University of California Santa Cruz.
  • Forest, C. E., Allen, M. R., Sokolov, A. P. and Stone, P. H. (2001) Constrainting climate model properties using optimal fingerprint detection methods. Climate Dynamics, 18, 277–295.
  • Forest, C. E., Stone, P. H. and Sokolov, A. P. (2006) Estimated pdfs of climate system properties including natural and anthropogenic forcings. Geophys. Res. Let., 33, doi:10.1029/2005GL023977.
  • Forest, C. E., Stone, P. H., Sokolov, A. P. and Allen, M. R. (2002) Quantifying uncertainties in climate system properties with the use of recent climate observations. Science, 295, 113–117.
  • Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D., Haywood, J., Lean, J., Lowe, D., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M. and Dorland, R. V. (2007) Changes in atmospheric constituents and in radiative forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M.Tignor and H. Miller), 129–234. Cambridge University Press, Cambridge, UK and New York, NY, USA.
  • Forster, P. M. F. and Gregory, J. M. (2006) The climate sensitivity and its components diagnosed from earth radiation budget data. J. Climate, 19, 39–52.
  • Frame, D. J., Booth, B. B. B., Kettleborough, J. A., Stainforth, D. A., Gregory, J. M., Collins, M., and Allen, M. R. (2005) Constraining climate forecasts: The role of prior assumptions. Geophys. Res. Let., 32, doi:10.1029/2004GL022241.
  • Gregory, J., Stouffer, R., Raper, S., Stott, P. and Rayner, N. (2002) An observationally based estimate of the climate sensitivity. J. Climate, 15, 3117–3121.
  • Hansen, J. and 22 others (2002) Climate forcings in GISS SI2000 simulations. J. Geophys. Res., 107, DOI 10.1029/2001JD001143.
  • Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, R. and Lerner, J. (1984) Climate sensitivity: Analysis of feedback mechanisms. In Climate Processes and Climate Sensitivity, Geophysical Monograph (eds. J. E. Hansen and T. Takahashi), vol. 29, 130–163. American Geophysical Union, Washington, D.C.
  • Hansen, J., Russell, G., Rind, D., Stone, P., Lacis, A., Lebedeff, S., Ruedy, R. and Travis, L. (1983) Efficient three-dimensional global models for climate studies: Models I and II. Mon. Weath. Rev., 111, 609–662.
  • Hegerl, G., Zwiers, F. W., Braconnot, P., Gillett, N., Luo, Y., Orsini, J. M., Nicholls, N., Penner, J. and Stott, P. (2007) Understanding and attributing climate change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M.Tignor and H. Miller), 663–746. Cambridge University Press, Cambridge, UK and New York, NY, USA.
  • International ad hoc Detection and Attribution Group, C. (2005) Detecting and attributing external influences on the climate system: A review of recent advances. J. Climate, 18, 1291–1314.
  • IPCC (2007) Climate Change 2007 – The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Solomon, S. et al. (eds.), Cambridge University Press. 996 pp.
  • Jones, P., New, M., Parker, D., Martin, S. and Rigor, I. (1999) Surface air temperature and its changes over the past 150 years. Reviews of Geophysics, 37, 173–199.
  • Kennedy, M. C. and O'Hagan, A. (2001) Bayesian calibration of computer models. Journal of the Royal Statistical Society, Series B, 63, 425–464.
  • Knutti, R., Stocker, T. F., Joos, F. and Plattner, G. (2002) Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature, 416, 719–723.
  • –- (2003) Probabilistic climate change projections using neural networks. Clim. Dyn., 21, 257–272.
  • Lean, J. (2000) Evolution of the sun's spectral irradiance since the maunder minimum. Geophys. Res. Lett., 27, 2421–2424.
  • Levitus, S., Antonov, J. and Boyer, T. P. (2005) Warming of the world ocean, 1955–2003. Geophys. Res. Let., 32, doi:10.1029/2004GL021592.
  • Mears, C., Forest, C., Spencer, R., Vose, R. and Reynolds, R. (2006) What is our understanding of the contribution made by observational or methodological uncertainties to the previously reported vertical differences in temperature trends? In Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences (eds. T. R. Karl, S. J. Hassol, C. D. Miller and W. L. Murray). A Report by the Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC.
  • Meehl, G., Stocker, T., Collins, W., Friedlingstein, P., Gaye, A., Gregory, J., Kitoh, A., Knutti, R., Murphy, J., Noda, A., Raper, S., Watterson, I., Weaver, A. and Zhao, Z.-C. (2007) Global climate projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M.Tignor and H. Miller), 747–846. Cambridge University Press, Cambridge, UK and New York, NY, USA.
  • Mitchell, J. F. B., Karoly, D. J., Hegerl, G. C., Zwiers, F. W., Allen, M. R. and Marengo, J. (2001) Detection of climate change and attribution of causes. In Climate Change 2001: The Scientific Basis (eds. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson), 695–738. Cambridge University Press, Cambridge, UK and New York, NY, USA.
  • Morgan, M. G. and Keith, D. W. (1995) Subjective judgements by climate experts. Environ. Sci. Technol., 29, 468A–476A.
  • Parker, D. E., Gordon, M., Cullum, D. P. N., Sexton, D. M. H., Folland, C. K. and Rayner, N. (1997) A new global gridded radiosonde temperature data base and recent temperature trends. Geophysical Research Letters, 24, 1499–1502.
  • Paulo, R. (2005) Default priors for Gaussian processes. The Annals of Statistics, 33, 556–582.
  • Ramankutty, N. and Foley, J. A. (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochemical Cycles, 13, 997–1027.
  • Sansó, B., Forest, C. and Zantedeschi, D. (2007) Statistical calibration of climate system properties. Tech. Rep. ams2007-06, Applied Mathematics and Statistics, University of California Santa Cruz.
  • Sato, M., Hansen, J. E., McCormick, M. P. and Pollack, J. B. (1993) Stratospheric aerosol optical depths. J. Geophys. Res., 98, 22987–22994.
  • Schneider, S. H. (1992) Introduction to climate modeling. In Climate System Modeling (ed. K. E. Trenberth), 3–26. Cambridge University Press, New York, NY.
  • Smith, S. J., Andres, R., Conception, E. and Lurz, J. (2003) Historical sulfur dioxide emissions 1850-2000. Tech. Rep. ftp://jgcri.umd.edu/ssmith/Hist_SO2_Emissions/, Pacific Northwest National Laboratory, Joint Global Change Research Institute, 8400 Baltimore Avenue, College Park, Maryland 20740.
  • Sokolov, A. P., Forest, C. E. and Stone, P. H. (2003) Comparing oceanic heat uptake in aogcm transient climate change experiments. J. Climate, 16, 1573–1582.
  • Sokolov, A. P. and Stone, P. H. (1998) A flexible climate model for use in integrated assessments. Clim. Dyn., 14, 291–303.
  • –- (1998) A flexible climate model for use in integrated assessments. Climate Dynamics, 14, 291–303.
  • Stone, P. H. and Yao, M.-S. (1987) Development of a two-dimensional zonally averaged statistical-dynamical model. part ii: the role of eddy momentum fluxes in the general circulation and their parametrization. J. Atmos. Sci., 44, 3769–3786.
  • –- (1990) Development of a two-dimensional zonally averaged statistical-dynamical model. part iii: the parametrization of the eddy fluxes of heat and moisture. J. Clim., 3, 726–740.
  • Tebaldi, C. and Sansó, B. (2007) Joint projections of temperature and precipitation change from multiple climate models: A hierarchical bayes approach. Tech. Rep. ams2007-12, Applied Mathematics and Statistics, University of California Santa Cruz.
  • Thorne, P. W., Parker, D. E., Tett, S. F. B., Jones, P. D., McCarthy, M., Coleman, H. and Brohan, P. (2005) Revisiting radiosonde upper air temperatures from 1958 to 2002. J. Geophys. Res., 110, doi:10.1029/2004JD005753.
  • Webster, M. D. and Sokolov, A. P. (2000) A methodology for quantifying uncertainty in climate projections. Climatic Change, 46, 417–446.
  • Zhou, W. and Sansó, B. (2007) Statistical inference for atmospheric transport models using process convolutions. Environmetrics, DOI 10.1002/env.858. In Press.

See also

  • Related item: James Gattiker, Dave Higdon. Comment on article by Sansó et al. Bayesian Anal., Vol. 3, Iss. 1 (2008), 39-44.
  • Related item: Jonathan Rougier, Dave Higdon. Comment on article by Sansó et al. Bayesian Anal., Vol. 3, Iss. 1 (2008), 45-56.
  • Related item: Chris E. Forest, Bruno Sansó, Daniel Zantedeschi. Rejoinder. Bayesian Anal., Vol. 3, Iss. 1 (2008), 57-61.