Bayesian Analysis

Rejoinder

Catherine A. Calder, Peter F. Craigmile, Noel Cressie, Hongfei Li, and Rajib Paul

Full-text: Open access

Article information

Source
Bayesian Anal. Volume 4, Number 1 (2009), 55-62.

Dates
First available in Project Euclid: 22 June 2012

Permanent link to this document
http://projecteuclid.org/euclid.ba/1340370389

Digital Object Identifier
doi:10.1214/09-BA401REJ

Mathematical Reviews number (MathSciNet)
MR2486238

Citation

Craigmile, Peter F.; Calder, Catherine A.; Li, Hongfei; Paul, Rajib; Cressie, Noel. Rejoinder. Bayesian Anal. 4 (2009), no. 1, 55--62. doi:10.1214/09-BA401REJ. http://projecteuclid.org/euclid.ba/1340370389.


Export citation

References

  • Banerjee, S., Carlin, B., and Gelfand, A. (2004). Hierarchical Modeling and Analysis for Spatial Data. Boca Raton, FL: Chapman & Hall/CRC.
  • Berliner, L. M. (2003). “Physical-statistical modeling in geophysics.” Journal of Geophysical Research (Atmospheres), 108 (D24): 8776, doi: 10.1029/2002JD002865.
  • Calder, C. A., Craigmile, P. F., and Zhang, J. (2008). “Regional Spatial Modeling of Topsoil Geochemistry.” Biometrics. doi: 10.1111/j.1541-0420.2008.01038.x.
  • Clayton, C. A., Pellizzari, E. D., and Quackenboss, J. J. (2002). “National Human Exposure Assessment Survey: Analysis of exposure pathways and routes for arsenic and lead in EPA Region 5.” Journal of Exposure Analysis and Environmental Epidemiology, 12: 29–43.
  • Committee on Advances in Assessing Human Exposure to Airborne Pollutants, N. R. C. (1991). Human Exposure Assessment for Airborne Pollutants: Advances and Opportunities. The National Academies Press.
  • Cressie, N., Buxton, B. E., Calder, C. A., Craigmile, P. F., Dong, C., McMillan, N. J., Morara, M., Santner, T. J., Wang, K., Young, G., and Zhang, J. (2007). “From Sources to Biomarkers: A Hierarchical Bayesian Approach for Human Exposure Modeling.” Journal of Statistical Planning and Inference, 137: 3361–3379.
  • Cressie, N., Richardson, S., and Jaussent, I. (2004). “Ecological Bias: Use of Maximum-entropy Approximations.” Australian and New Zealand Journal of Statistics, 46: 233–255.
  • Gelfand, A. E. and Smith, A. F. M. (1990). “Sampling-based Approaches to Calculating Marginal Densities.” Journal of the American Statistical Association, 85: 398–409.
  • Gelman, A. (2006). “Comment on “A Comparison of Bayesian and Likehood-based Methods for Fitting Mutilevel Models” by W. J. Browne and D. Draper.” Bayesian Analysis, 1: 515–534.
  • Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian Data Analysis, 2nd edn. Boca Raton, FL: Chapman & Hall/CRC.
  • Geweke, J. (1991). “Efficient simulation from the multivariate normal and Student-t distributions subject to linear constraints.” In Keramidas, E. M. (ed.), Computing Science and Statistics: Proceedings of the Twenty-Third Symposium on the Interface, 571–568. Fairfax, VA: Interface Foundation of North America.
  • Lauritzen, S. L. (1996). Graphical Models. Oxford, UK: Oxford University Press.
  • Lindley, D. V. and Smith, A. F. M. (1972). “Bayes Estimates for the Linear Model (with Discussion).” Journal of the Royal Statistical Society, Series B, 34: 1–41.
  • McMillan, N. J., Morara, M., and Young, G. S. (2006). “Hierarchical Bayesian Modeling of Human Exposure Pathways and Routes.” 2492–2503. Alexandria, VA: American Statistical Association.
  • NERL and National Center for Environmental Assessment (2000). Strategic Plan For The Analysis Of The National Human Exposure Assessment Survey (NHEXAS) Pilot Study Data. ORD, U.S. EPA. URL http://www.epa.gov/nerl/research/nhexas/strategy.pdf
  • O’Rourke, M. K., Van de Water, P. K., Jin, S., Rogan, S. P., Weiss, A. D., Gordon, S., Moschandreas, D., and Lebowitz, M. (1999). “Evaluations of Primary Metals from NHEXAS Arizona: Distributions and Preliminary Exposures.” Journal of Exposure Analysis and Environmental Epidemiology, 9: 435–445.
  • Pellizzari, E., Lioy, P., Quackenboss, J., Whitmore, R., Clayton, A., Freeman, N., Waldman, J., Thomas, K., Rodes, C., and Wilcosky, T. (1995). “Population-Based Exposure Measurements in EPA Region 5: A Phase I Field Study in Support of the National Human Exposure Assessment Survey.” Journal of Exposure Analysis and Environmental Epidemiology, 5: 327–358.
  • R Development Core Team (2007). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL http://www.R-project.org
  • Robertson, G., Lebowitz, M., O’Rourke, M., Gordon, S., and Moschandreas, D. (1999). “The National Human Exposure Assessment Survey (NHEXAS) Study in Arizona – Introduction and Preliminary Results.” Journal of Exposure Analysis and Environmental Epidemiology, 9: 427–434.
  • Samet, J. and Jaakkola, J. (1999). “The Epidemiologic Approach to Investigating Outdoor Air Pollution.” In Holgate, S., Samet, J., Koren, H., and Maynard, R. (eds.), Air Pollution and Health. London, UK: Academic Press.
  • Santner, T. J., Craigmile, P. F., Calder, C. A., and Paul, R. (2008). “Effect and Pathways Modifiers in a Bayesian Pathways Analysis of the National Human Exposure Assessment Survey for Arsenic in EPA Region 5.” Environmental Science and Technology, 42(15): 5607–5614.
  • Seaber, P., Kapinos, F., and Knapp, G. (1987). Hydrologic Unit Maps. U.S. Geological Survey, Denver, CO.
  • Tapio, S. and Grosche, B. (2006). “Arsenic in the aetiology of cancer.” Mutation Research, 612: 215–246.
  • Tierney, L. (1994). “Markov Chains for Exploring Posterior Distributions.” Annals of Statistics, 22: 1701–1728.
  • WHO (1981). Arsenic. Geneva: World Health Organization. Environmental Health Criteria 18.

See also

  • Related item: Catherine A. Calder, Peter F. Craigmile, Noel Cressie, Hongfei Li, Rajib Paul. Hierarchical model building, fitting, and checking: a behind-the-scenes look at a Bayesian analysis of arsenic exposure pathways. Bayesian Anal., Vol. 4, Iss. 1 (2009), 1-35.