The Annals of Statistics

Adaptive testing on a regression function at a point

Timothy Armstrong

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We consider the problem of inference on a regression function at a point when the entire function satisfies a sign or shape restriction under the null. We propose a test that achieves the optimal minimax rate adaptively over a range of Hölder classes, up to a $\log\log n$ term, which we show to be necessary for adaptation. We apply the results to adaptive one-sided tests for the regression discontinuity parameter under a monotonicity restriction, the value of a monotone regression function at the boundary and the proportion of true null hypotheses in a multiple testing problem.

Article information

Source
Ann. Statist. Volume 43, Number 5 (2015), 2086-2101.

Dates
Received: October 2014
Revised: February 2015
First available in Project Euclid: 3 August 2015

Permanent link to this document
http://projecteuclid.org/euclid.aos/1438606854

Digital Object Identifier
doi:10.1214/15-AOS1342

Mathematical Reviews number (MathSciNet)
MR3375877

Zentralblatt MATH identifier
1327.62276

Subjects
Primary: 62G10: Hypothesis testing 62G08: Nonparametric regression
Secondary: 62G20: Asymptotic properties

Keywords
Adaptive testing regression discontinuity identification at infinity

Citation

Armstrong, Timothy. Adaptive testing on a regression function at a point. Ann. Statist. 43 (2015), no. 5, 2086--2101. doi:10.1214/15-AOS1342. http://projecteuclid.org/euclid.aos/1438606854.


Export citation

References

  • Andrews, D. W. K. and Schafgans, M. M. A. (1998). Semiparametric estimation of the intercept of a sample selection model. Rev. Econ. Stud. 65 497–517.
  • Brown, L. D. and Low, M. G. (1996). Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384–2398.
  • Cai, T. T., Jin, J. and Low, M. G. (2007). Estimation and confidence sets for sparse normal mixtures. Ann. Statist. 35 2421–2449.
  • Cai, T. T. and Low, M. G. (2004). An adaptation theory for nonparametric confidence intervals. Ann. Statist. 32 1805–1840.
  • Cai, T. T., Low, M. G. and Xia, Y. (2013). Adaptive confidence intervals for regression functions under shape constraints. Ann. Statist. 41 722–750.
  • Chamberlain, G. (1986). Asymptotic efficiency in semiparametric models with censoring. J. Econometrics 32 189–218.
  • Donoho, D. and Jin, J. (2004). Higher criticism for detecting sparse heterogeneous mixtures. Ann. Statist. 32 962–994.
  • Dümbgen, L. (2003). Optimal confidence bands for shape-restricted curves. Bernoulli 9 423–449.
  • Dümbgen, L. and Spokoiny, V. G. (2001). Multiscale testing of qualitative hypotheses. Ann. Statist. 29 124–152.
  • Efron, B. (2010). Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction. Institute of Mathematical Statistics (IMS) Monographs 1. Cambridge Univ. Press, Cambridge.
  • Fan, J. (1996). Test of significance based on wavelet thresholding and Neyman’s truncation. J. Amer. Statist. Assoc. 91 674–688.
  • Hahn, J., Todd, P. and Van der Klaauw, W. (2001). Identification and estimation of treatment effects with a regression-discontinuity design. Econometrica 69 201–209.
  • Heckman, J. (1990). Varieties of selection Bias. The American Economic Review 80 313–318.
  • Imbens, G. W. and Lemieux, T. (2008). Regression discontinuity designs: A guide to practice. J. Econometrics 142 615–635.
  • Ingster, Y. I. and Suslina, I. A. (2003). Nonparametric Goodness-of-Fit Testing Under Gaussian Models. Lecture Notes in Statistics 169. Springer, New York.
  • Khan, S. and Tamer, E. (2010). Irregular identification, support conditions, and inverse weight estimation. Econometrica 78 2021–2042.
  • Lepski, O. V. and Tsybakov, A. B. (2000). Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point. Probab. Theory Related Fields 117 17–48.
  • Low, M. G. (1997). On nonparametric confidence intervals. Ann. Statist. 25 2547–2554.
  • Meinshausen, N. and Rice, J. (2006). Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses. Ann. Statist. 34 373–393.
  • Nussbaum, M. (1996). Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399–2430.
  • Pouet, C. (1999). On testing nonparametric hypotheses for analytic regression functions in Gaussian noise. Math. Methods Statist. 8 536–549.
  • Shorack, G. R. and Wellner, J. A. (2009). Empirical Processes with Applications to Statistics. SIAM, Philadelphia, PA.
  • Spokoiny, V. G. (1996). Adaptive hypothesis testing using wavelets. Ann. Statist. 24 2477–2498.
  • Storey, J. D. (2002). A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B. Stat. Methodol. 64 479–498.
  • Wellner, J. A. (1978). Limit theorems for the ratio of the empirical distribution function to the true distribution function. Z. Wahrsch. Verw. Gebiete 45 73–88.