The Annals of Statistics

Rejoinder to discussions of “Frequentist coverage of adaptive nonparametric Bayesian credible sets”

Botond Szabó, A. W. van der Vaart, and J. H. van Zanten

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Ann. Statist. Volume 43, Number 4 (2015), 1463-1470.

Dates
Received: January 2015
First available in Project Euclid: 17 June 2015

Permanent link to this document
http://projecteuclid.org/euclid.aos/1434546211

Digital Object Identifier
doi:10.1214/15-AOS1270REJ

Mathematical Reviews number (MathSciNet)
MR3357867

Zentralblatt MATH identifier
1321.62045

Citation

Szabó, Botond; van der Vaart, A. W.; van Zanten, J. H. Rejoinder to discussions of “Frequentist coverage of adaptive nonparametric Bayesian credible sets”. Ann. Statist. 43 (2015), no. 4, 1463--1470. doi:10.1214/15-AOS1270REJ. http://projecteuclid.org/euclid.aos/1434546211.


Export citation

References

  • [1] Agapiou, S., Larsson, S. and Stuart, A. M. (2013). Posterior contraction rates for the Bayesian approach to linear ill-posed inverse problems. Stochastic Process. Appl. 123 3828–3860.
  • [2] Belitser, E. (2014). On coverage and oracle radial rate of DDM-credible sets under excessive bias restriction. Available at arXiv:1407.5232.
  • [3] Castillo, I. and Nickl, R. (2014). On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures. Ann. Statist. 42 1941–1969.
  • [4] Giné, E. and Nickl, R. (2010). Confidence bands in density estimation. Ann. Statist. 38 1122–1170.
  • [5] Knapik, B. and Salomond, J.-B. (2014). A general approach to posterior contraction in nonparametric inverse problems. Available at arXiv:1407.0335.
  • [6] Knapik, B. T., van der Vaart, A. W. and van Zanten, J. H. (2013). Bayesian recovery of the initial condition for the heat equation. Comm. Statist. Theory Methods. 42 1294–1313.
  • [7] Knapik, B. T., Szabó, B. T., van der Vaart, A. W. and van Zanten, J. H. (2015). Bayes procedures for adaptive inference in inverse problems for the white noise model. Probab. Theory Related Fields. DOI:10.1007/s00440-015-0619-7.
  • [8] Knapik, B. T., van der Vaart, A. W. and van Zanten, J. H. (2011). Bayesian inverse problems with Gaussian priors. Ann. Statist. 39 2626–2657.
  • [9] Ray, K. (2014). Bernstein–von Mises theorems for adaptive Bayesian nonparametric procedures. Available at arXiv:1407.3397.
  • [10] Ray, K. (2013). Bayesian inverse problems with non-conjugate priors. Electron. J. Stat. 7 2516–2549.
  • [11] Serra, P. and Krivobokova, T. (2014). Adaptive empirical Bayesian smoothing splines. Available at arXiv:1411.6860.
  • [12] Sniekers, S. and van der Vaart, A. (2014). Credible sets in the fixed design model with Brownian motion prior. J. Statist. Plann. Inference. DOI:10.1016/j.jspi.2014.07.008.
  • [13] Szabó, B. (2014). On Bayesian based adaptive confidence sets for linear functionals. Available at arXiv:1412.0459.
  • [14] Szabó, B., van der Vaart, A. and van Zanten, H. (2014). Honest Bayesian confidence sets for the L2-norm. J. Statist. Plann. Inference. DOI:10.1016/j.jspi.2014.06.005.
  • [15] Szabó, B. T., van der Vaart, A. W. and van Zanten, J. H. (2013). Empirical Bayes scaling of Gaussian priors in the white noise model. Electron. J. Stat. 7 991–1018.
  • [16] Szabo, B. T., van der Vaart, A. W. and van Zanten, J. H. (2015). Frequentist coverage of adaptive nonparametric Bayesian credible sets. Ann. Statist. 43 1391–1428.

See also

  • Main article: Frequentist coverage of adaptive nonparametric Bayesian credible sets.