Abstract
Let $f$ be a nonincreasing function defined on $[0,1]$. Under standard regularity conditions, we derive the asymptotic distribution of the supremum norm of the difference between $f$ and its Grenander-type estimator on sub-intervals of $[0,1]$. The rate of convergence is found to be of order $(n/\log n)^{-1/3}$ and the limiting distribution to be Gumbel.
Citation
Cécile Durot. Vladimir N. Kulikov. Hendrik P. Lopuhaä. "The limit distribution of the $L_{\infty}$-error of Grenander-type estimators." Ann. Statist. 40 (3) 1578 - 1608, June 2012. https://doi.org/10.1214/12-AOS1015
Information