The Annals of Statistics

Erich Leo Lehmann—A glimpse into his life and work

Javier Rojo

Full-text: Open access

Abstract

Through the use of a system-building approach, an approach that includes finding common ground for the various philosophical paradigms within statistics, Erich L. Lehmann is responsible for much of the synthesis of classical statistical knowledge that developed from the Neyman–Pearson–Wald school. A biographical sketch and a brief summary of some of his many contributions are presented here. His complete bibliography is also included and the references present many other sources of information on his life and his work.

Article information

Source
Ann. Statist. Volume 39, Number 5 (2011), 2244-2265.

Dates
First available in Project Euclid: 11 November 2011

Permanent link to this document
http://projecteuclid.org/euclid.aos/1321020523

Digital Object Identifier
doi:10.1214/11-AOS927

Mathematical Reviews number (MathSciNet)
MR2906866

Zentralblatt MATH identifier
06008034

Subjects
Primary: 01A70: Biographies, obituaries, personalia, bibliographies 62-03: Historical (must also be assigned at least one classification number from Section 01) 62A01: Foundations and philosophical topics
Secondary: 62C15: Admissibility 62C20: Minimax procedures

Keywords
Decision theory frequentist likelihood ratio tests minimaxity admisibility invariance Bayes

Citation

Rojo, Javier. Erich Leo Lehmann—A glimpse into his life and work. Ann. Statist. 39 (2011), no. 5, 2244--2265. doi:10.1214/11-AOS927. http://projecteuclid.org/euclid.aos/1321020523.


Export citation

References

  • [1] Bickel, P. J. (2009). Erich L. Lehmann, 1917–2009. IMS Bulletin 38 pp. 10.
  • [2] Bickel, P. J., Doksum, K. and Hodges, J. L. (1983). A Festschrift for Erich L. Lehmann. Wadsworth, Belmont.
  • [3] Brillinger, D. R. (2010). Erich Leo Lehmann, 1917–2009. J. Roy Statist. Soc. Ser. A 173 683–686.
  • [4] DeGroot, M. H. (1986). A conversation with Erich L. Lehmann. Statist. Sci. 1 243–258.
  • [5] Doksum, K. (1969). Star-shaped transformations and the power of rank tests. Ann. Math. Statist. 40 1167–1176.
  • [6] Hsu, P. L. (1941). Analysis of variance from the power function standpoint. Biometrika 32 62–69.
  • [7] Hsu, P. L. (1945). On the power functions of the E2-test and the T2-test. Ann. Math. Statist. 16 278–286.
  • [8] Kiefer, J. (1958). On the nonrandomized optimality and randomized nonoptimality of symmetrical designs. Ann. Math. Statist. 29 675–699.
  • [9] Neyman, J. (1935). Sur la vérification des hypothèses statistiques composées. Bull. Soc. Math. France 63 246–266.
  • [10] Neyman, J. and Pearson, E. S. (1933). On the problem of the most efficient tests of statistical hypotheses. Roy. Soc. London Phil. Trans. Ser. A 231 289–337.
  • [11] Reid, C. (1982). Neyman—From Life. Springer, New York.
  • [12] Rojo, J., ed. (2006). Optimality: The Second Erich L. Lehmann Symposium. Institute of Mathematical Statistics Lecture Notes—Monograph Series 49. IMS, Beachwood, OH.
  • [13] Rojo, J., ed. (2009a). Optimality: The Third Erich L. Lehmann Symposium. nstitute of Mathematical Statistics Lecture Notes—Monograph Series 57. IMS, Beachwood, OH.
  • [14] Rojo, J. (2009b). Erich L. Lehmann, the Lehmann Symposia, and November 20th 1917. In Optimality. Institute of Mathematical Statistics Lecture Notes—Monograph Series 57 1–7. IMS, Beachwood, OH.
  • [15] Rojo, J., ed. (2011). Erich L. Lehmann Selected Works. Springer, New York.
  • [16] Rojo, J. and Perez-Abreu, V., eds. (2004). The First Erich L. Lehmann Symposium: Optimality. Institute of Mathematical Statistics Lecture Notes—Monograph Series 44. IMS, Beachwood, OH.
  • [17] Scheffé, H. (1942). On the ratio of the variances of two normal populations. Ann. Math. Statist. 13 371–388.
  • [18] Stigler, S. (2009). The honorable Erich L. Lehmann. In Optimality (J. Rojo, ed.). Institute of Mathematical Statistics Lecture Notes—Monograph Series 57 8–10. IMS, Beachwood, OH.
  • [19] van Zwet, W. R. (2011). Remembering Erich Lehmann. Ann. Statist. 39 24–37.
  • [20] Wald, A. (1942). On the power function of the analysis of variance test. Ann. Math. Statist. 13 434–439.
  • [21] Wald, A. (1950). Statistical Decision Functions. Wiley, New York.