The Annals of Statistics

Discussion: One-step sparse estimates in nonconcave penalized likelihood models: Who cares if it is a white cat or a black cat?

Xiao-Li Meng

Full-text: Open access

Article information

Source
Ann. Statist. Volume 36, Number 4 (2008), 1542-1552.

Dates
First available in Project Euclid: 16 July 2008

Permanent link to this document
http://projecteuclid.org/euclid.aos/1216237289

Digital Object Identifier
doi:10.1214/07-AOS0316B

Mathematical Reviews number (MathSciNet)
MR2435445

Zentralblatt MATH identifier
05317186

Subjects
Primary: 62F99: None of the above, but in this section
Secondary: 62F15: Bayesian inference

Citation

Meng, Xiao-Li. Discussion: One-step sparse estimates in nonconcave penalized likelihood models: Who cares if it is a white cat or a black cat?. Ann. Statist. 36 (2008), no. 4, 1542--1552. doi:10.1214/07-AOS0316B. http://projecteuclid.org/euclid.aos/1216237289.


Export citation

References

  • [1] Abramovich, F., Sapatinas, T. and Silverman, B. W. (1998). Wavelet thresholding via a Bayesian approach. J. Roy. Statist. Soc. Ser. B 60 725–749.
  • [2] Barndorff-Nielsen, O. (1987). Differential geometry and statistics: Some mathematical aspects. Indian J. Math. 29 335–350.
  • [3] Barndorff-Nielsen, O. and Jupp, J. (1997). Yokes and symplectic structures. J. Statist. Plann. Inference 63 133–146.
  • [4] Blæsild, P. (1991). Yokes and tensors derived from yokes. Ann. Inst. Statist. Math. 43 95–113.
  • [5] Johnston, I. and Silverman, B. (2005). Empirical Bayes selection of wavelets thresholds. Ann. Statist. 33 1700–1753.
  • [6] Kong, A. snd McCullagh, P., Meng, X.-L. and Nicolae, D. (2007). Further explorations of likelihood theory for Monte Carlo integration. In Advances in Statistical Modeling and Inference: Essays in Honor of Kjell A Doksum (V. Nair, ed.) 563–592. World Scientific, Singapore.
  • [7] Kong, A. snd McCullagh, P., Meng, X.-L., Nicolae, D. and Tan, Z. (2003). A theory of statistical models for Monte Carlo integration (with discussion). J. Roy. Statist. Soc. Ser. B 65 585–618.
  • [8] Lange, K., Hunter, D. and Yang, I. (2000). Optimization transfer using surrogate objective functions (with discussion). J. Comput. Graph. Statist. 9 1–59.
  • [9] Meng, X.-L. (1994). On the rate of convergence of the ECM algorithm. Ann. Statist. 22 326–339.
  • [10] Meng, X.-L. (2000). Discussion of “Optimization transfer using surrogate objective functions” by K. Lange, D. Hunter and I. Yang. J. Comput. Graph. Statist. 9 35–43.
  • [11] Meng, X.-L. and Rubin, D. B. (1991). Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm. J. Amer. Statist. Assoc. 86 899–909.
  • [12] Meng, X.-L. and Rubin, D. B. (1994). On the global and componentwise rates of convergence of the EM algorithm. Linear Algebra Appl. 199 413–425.
  • [13] Meng, X.-L. and van Dyk, D. A. (1997). The EM algorithm—an old folk song sung to a fast new tune (with discussion). J. Roy. Statist. Soc. Ser. B 59 511–567.
  • [14] Meng, X.-L. and van Dyk, D. A. (1998). Fast EM-type implementations for mixed-effects models. J. Roy. Statist. Soc. Ser. B 60 559–578.
  • [15] Silverman, B., Jones, M. C., Wilson, J. D. and Nychka, D. W. (1990). A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography (with discussion). J. Roy. Statist. Soc. Ser. B 57 271–324.