Open Access
October 2007 Asymptotic theory of least squares estimators for nearly unstable processes under strong dependence
Boris Buchmann, Ngai Hang Chan
Ann. Statist. 35(5): 2001-2017 (October 2007). DOI: 10.1214/009053607000000136
Abstract

This paper considers the effect of least squares procedures for nearly unstable linear time series with strongly dependent innovations. Under a general framework and appropriate scaling, it is shown that ordinary least squares procedures converge to functionals of fractional Ornstein–Uhlenbeck processes. We use fractional integrated noise as an example to illustrate the important ideas. In this case, the functionals bear only formal analogy to those in the classical framework with uncorrelated innovations, with Wiener processes being replaced by fractional Brownian motions. It is also shown that limit theorems for the functionals involve nonstandard scaling and nonstandard limiting distributions. Results of this paper shed light on the asymptotic behavior of nearly unstable long-memory processes.

References

1.

Anderson, T. W. (1959). On asymptotic distributions of estimates of parameters of stochastic difference equations. Ann. Math. Statist. 30 676–687.  MR0107347 10.1214/aoms/1177706198 euclid.aoms/1177706198  0092.36502 Anderson, T. W. (1959). On asymptotic distributions of estimates of parameters of stochastic difference equations. Ann. Math. Statist. 30 676–687.  MR0107347 10.1214/aoms/1177706198 euclid.aoms/1177706198  0092.36502

2.

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.  MR0233396 0172.21201 Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.  MR0233396 0172.21201

3.

Brockwell, P. and Davis, R. A. (1991). Time Series: Theory and Methods, 2nd ed. Springer, New York.  MR1093459 0709.62080 Brockwell, P. and Davis, R. A. (1991). Time Series: Theory and Methods, 2nd ed. Springer, New York.  MR1093459 0709.62080

4.

Chan, N. H. and Wei, C. Z. (1987). Asymptotic inference for nearly nonstationary AR$(1)$ processes. Ann. Statist. 15 1050–1063.  MR0902245 10.1214/aos/1176350492 euclid.aos/1176350492  0638.62082 Chan, N. H. and Wei, C. Z. (1987). Asymptotic inference for nearly nonstationary AR$(1)$ processes. Ann. Statist. 15 1050–1063.  MR0902245 10.1214/aos/1176350492 euclid.aos/1176350492  0638.62082

5.

Dahlhaus, R. (1985). Data tapers in time series analysis. Habilitation thesis, Universität-GHS, Essen. 0605.62100 Dahlhaus, R. (1985). Data tapers in time series analysis. Habilitation thesis, Universität-GHS, Essen. 0605.62100

6.

Davidson, J. (2002). Establishing conditions for the functional central limit theorem in nonlinear and semiparametric time series processes. J. Econometrics 106 243–269.  MR1885370 10.1016/S0304-4076(01)00100-2 1041.60032 Davidson, J. (2002). Establishing conditions for the functional central limit theorem in nonlinear and semiparametric time series processes. J. Econometrics 106 243–269.  MR1885370 10.1016/S0304-4076(01)00100-2 1041.60032

7.

Davidson, J. and de Jong, R. M. (2000). The functional central limit theorem and weak convergence to stochastic integrals. II. Fractionally integrated processes. Econometric Theory 16 643–666.  MR1802836 10.1017/S0266466600165028 0266-4666%28200010%2916%3A5%3C643%3ATFCLTA%3E2.0.CO%3B2-7 0981.60028 Davidson, J. and de Jong, R. M. (2000). The functional central limit theorem and weak convergence to stochastic integrals. II. Fractionally integrated processes. Econometric Theory 16 643–666.  MR1802836 10.1017/S0266466600165028 0266-4666%28200010%2916%3A5%3C643%3ATFCLTA%3E2.0.CO%3B2-7 0981.60028

8.

Davydov, Yu. A. (1970). The invariance principle for stationary processes. Theory Probab. Appl. 15 487–498.  MR0283872 0219.60030 Davydov, Yu. A. (1970). The invariance principle for stationary processes. Theory Probab. Appl. 15 487–498.  MR0283872 0219.60030

9.

de Jong, R. M. and Davidson, J. (2000). The functional central limit theorem and weak convergence to stochastic integrals. I. Weakly dependent processes. Econometric Theory 16 621–642.  MR1802835 10.1017/S0266466600165016 0266-4666%28200010%2916%3A5%3C621%3ATFCLTA%3E2.0.CO%3B2-F 0981.60027 de Jong, R. M. and Davidson, J. (2000). The functional central limit theorem and weak convergence to stochastic integrals. I. Weakly dependent processes. Econometric Theory 16 621–642.  MR1802835 10.1017/S0266466600165016 0266-4666%28200010%2916%3A5%3C621%3ATFCLTA%3E2.0.CO%3B2-F 0981.60027

10.

Dobrushin, R. L. and Major, P. (1979). Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 27–52.  MR0550122 10.1007/BF00535673 0397.60034 Dobrushin, R. L. and Major, P. (1979). Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 27–52.  MR0550122 10.1007/BF00535673 0397.60034

11.

Doukhan, P., Oppenheim, G. and Taqqu, M. S., eds. (2003). Theory and Applications of Long-Range Dependence. Birkhäuser, Boston.  MR1956041 1005.00017 Doukhan, P., Oppenheim, G. and Taqqu, M. S., eds. (2003). Theory and Applications of Long-Range Dependence. Birkhäuser, Boston.  MR1956041 1005.00017

12.

Duncan, T. E., Hu, Y. and Pasik-Duncan, B. (2000). Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J. Control Optim. 38 582–612.  MR1741154 10.1137/S036301299834171X 0947.60061 Duncan, T. E., Hu, Y. and Pasik-Duncan, B. (2000). Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J. Control Optim. 38 582–612.  MR1741154 10.1137/S036301299834171X 0947.60061

13.

Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York.  MR0624435 0462.60045 Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York.  MR0624435 0462.60045

14.

Jeganathan, P. (1991). On the asymptotic behavior of least-squares estimators in AR time series with roots near the unit circle. Econometric Theory 7 269–306.  MR1130970 0266-4666%28199109%297%3A3%3C269%3AOTABOL%3E2.0.CO%3B2-0 Jeganathan, P. (1991). On the asymptotic behavior of least-squares estimators in AR time series with roots near the unit circle. Econometric Theory 7 269–306.  MR1130970 0266-4666%28199109%297%3A3%3C269%3AOTABOL%3E2.0.CO%3B2-0

15.

Jeganathan, P. (1999). On asymptotic inference in cointegrated time series with fractionally integrated errors. Econometric Theory 15 583–621.  MR1717968 10.1017/S0266466699154057 0266-4666%28199908%2915%3A4%3C583%3AOAIICT%3E2.0.CO%3B2-7 0985.62070 Jeganathan, P. (1999). On asymptotic inference in cointegrated time series with fractionally integrated errors. Econometric Theory 15 583–621.  MR1717968 10.1017/S0266466699154057 0266-4666%28199908%2915%3A4%3C583%3AOAIICT%3E2.0.CO%3B2-7 0985.62070

16.

Larsson, R. (1998). Bartlett corrections for unit root test statistics. J. Time Ser. Anal. 19 425–438.  MR1652192 10.1111/1467-9892.00101 0904.62102 Larsson, R. (1998). Bartlett corrections for unit root test statistics. J. Time Ser. Anal. 19 425–438.  MR1652192 10.1111/1467-9892.00101 0904.62102

17.

Le Breton, A. and Pham, D. T. (1989). On the bias of the least squares estimator for the first order autoregressive process. Ann. Inst. Statist. Math. 41 555–563.  MR1032599 10.1007/BF00050668 0694.62040 Le Breton, A. and Pham, D. T. (1989). On the bias of the least squares estimator for the first order autoregressive process. Ann. Inst. Statist. Math. 41 555–563.  MR1032599 10.1007/BF00050668 0694.62040

18.

Mann, H. B. and Wald, A. (1943). On the statistical treatment of linear stochastic difference equations. Econometrica 11 173–220.  MR0009291 10.2307/1905674 0063.03773 Mann, H. B. and Wald, A. (1943). On the statistical treatment of linear stochastic difference equations. Econometrica 11 173–220.  MR0009291 10.2307/1905674 0063.03773

19.

Marinucci, D. and Robinson, P. M. (1999). Alternative forms of fractional Brownian motion. J. Statist. Plann. Inference 80 111–122.  MR1713794 10.1016/S0378-3758(98)00245-6 0934.60071 Marinucci, D. and Robinson, P. M. (1999). Alternative forms of fractional Brownian motion. J. Statist. Plann. Inference 80 111–122.  MR1713794 10.1016/S0378-3758(98)00245-6 0934.60071

20.

Phillips, P. C. B. (1987). Towards a unified asymptotic theory for autoregression. Biometrika 74 535–547.  MR0909357 0654.62073 10.1093/biomet/74.3.535 0006-3444%28198709%2974%3A3%3C535%3ATAUATF%3E2.0.CO%3B2-S Phillips, P. C. B. (1987). Towards a unified asymptotic theory for autoregression. Biometrika 74 535–547.  MR0909357 0654.62073 10.1093/biomet/74.3.535 0006-3444%28198709%2974%3A3%3C535%3ATAUATF%3E2.0.CO%3B2-S

21.

Rao, M. M. (1978). Asymptotic distribution of an estimator of the boundary parameter of an unstable process. Ann. Statist. 6 185–190.  MR0458676 10.1214/aos/1176344077 euclid.aos/1176344077  0378.62018 Rao, M. M. (1978). Asymptotic distribution of an estimator of the boundary parameter of an unstable process. Ann. Statist. 6 185–190.  MR0458676 10.1214/aos/1176344077 euclid.aos/1176344077  0378.62018

22.

Robinson, P. M., ed. (2003). Time Series with Long Memory. Oxford Univ. Press.  MR2083220 02174795 Robinson, P. M., ed. (2003). Time Series with Long Memory. Oxford Univ. Press.  MR2083220 02174795

23.

Robinson, P. M. (2005). Efficiency improvements in inference on stationary and nonstationary fractional time series. Ann. Statist. 33 1800–1842.  MR2166563 10.1214/009053605000000354 euclid.aos/1123250230  1078.62096 Robinson, P. M. (2005). Efficiency improvements in inference on stationary and nonstationary fractional time series. Ann. Statist. 33 1800–1842.  MR2166563 10.1214/009053605000000354 euclid.aos/1123250230  1078.62096

24.

Robinson, P. M. (2005). The distance between rival nonstationary fractional processes. J. Econometrics 128 283–300.  MR2189554 10.1016/j.jeconom.2004.08.015 1335.62143 Robinson, P. M. (2005). The distance between rival nonstationary fractional processes. J. Econometrics 128 283–300.  MR2189554 10.1016/j.jeconom.2004.08.015 1335.62143

25.

Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall, New York.  MR1280932 0925.60027 Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall, New York.  MR1280932 0925.60027

26.

Sowell, F. (1990). The fractional unit root distribution. Econometrica 58 495–505.  MR1046932 10.2307/2938213 0727.62025 Sowell, F. (1990). The fractional unit root distribution. Econometrica 58 495–505.  MR1046932 10.2307/2938213 0727.62025

27.

Tanaka, K. (1996). Time Series Analysis: Nonstationary and Noninvertible Distribution Theory. Wiley, New York.  MR1397269 0861.62062 Tanaka, K. (1996). Time Series Analysis: Nonstationary and Noninvertible Distribution Theory. Wiley, New York.  MR1397269 0861.62062

28.

Taqqu, M. S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31 287–302.  MR0400329 10.1007/BF00532868 0303.60033 Taqqu, M. S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31 287–302.  MR0400329 10.1007/BF00532868 0303.60033

29.

Velasco, C. and Robinson, P. M. (2000). Whittle pseudo-maximum likelihood estimation for nonstationary time series. J. Amer. Statist. Assoc. 95 1229–1243.  MR1804246 10.2307/2669763 1008.62087 Velasco, C. and Robinson, P. M. (2000). Whittle pseudo-maximum likelihood estimation for nonstationary time series. J. Amer. Statist. Assoc. 95 1229–1243.  MR1804246 10.2307/2669763 1008.62087

30.

White, J. S. (1958). The limiting distribution of the serial correlation coefficient in the explosive case. Ann. Math. Statist. 29 1188–1197.  MR0100952 10.1214/aoms/1177706450 euclid.aoms/1177706450  0099.13004 White, J. S. (1958). The limiting distribution of the serial correlation coefficient in the explosive case. Ann. Math. Statist. 29 1188–1197.  MR0100952 10.1214/aoms/1177706450 euclid.aoms/1177706450  0099.13004

31.

Wu, W. B. (2006). Unit root testing for functionals of linear processes. Econometric Theory 22 1–14.  MR2212691 10.1017/S0266466606060014 1083.62098 Wu, W. B. (2006). Unit root testing for functionals of linear processes. Econometric Theory 22 1–14.  MR2212691 10.1017/S0266466606060014 1083.62098

32.

Wu, W. B. and Min, W. (2005). On linear processes with dependent innovations. Stochastic Process. Appl. 115 939–958.  MR2138809 10.1016/j.spa.2005.01.001 1081.62071 Wu, W. B. and Min, W. (2005). On linear processes with dependent innovations. Stochastic Process. Appl. 115 939–958.  MR2138809 10.1016/j.spa.2005.01.001 1081.62071

33.

Young, L. C. (1936). An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67 251–282. MR1555421 10.1007/BF02401743 Young, L. C. (1936). An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67 251–282. MR1555421 10.1007/BF02401743

34.

Zähle, M. (1998). Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields 111 333–374.  MR1640795 10.1007/s004400050171 0918.60037 Zähle, M. (1998). Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields 111 333–374.  MR1640795 10.1007/s004400050171 0918.60037
Copyright © 2007 Institute of Mathematical Statistics
Boris Buchmann and Ngai Hang Chan "Asymptotic theory of least squares estimators for nearly unstable processes under strong dependence," The Annals of Statistics 35(5), 2001-2017, (October 2007). https://doi.org/10.1214/009053607000000136
Published: October 2007
Vol.35 • No. 5 • October 2007
Back to Top