Abstract
Consider i.i.d. pairs $(\theta_i, X_i), i \geq 1$, where $\theta_1$ has an unknown prior distribution $\omega$ and given $\theta_1, X_1$ has distribution $P_{\theta_1}$. This setup arises naturally in the empirical Bayes problems. We put a probability (a hyperprior) on the space of all possible $\omega$ and consider the posterior mean $\hat{\omega}$ of $\omega$. We show that, under reasonable conditions, $P_{\hat{\omega}} = \int P_\theta d\hat{\omega}$ is consistent in $L_1$. Under a identifiability assumption, this result implies that $\hat{\omega}$ is consistent in probability. As another application of the $L_1$ consistency, we consider a general empirical Bayes problem with compact state space. We prove that the Bayes empirical Bayes rules are asymptotically optimal.
Citation
Somnath Datta. "On the Consistency of Posterior Mixtures and Its Applications." Ann. Statist. 19 (1) 338 - 353, March, 1991. https://doi.org/10.1214/aos/1176347986
Information