The Annals of Statistics

The Erdos-Renyi Law in Distribution, for Coin Tossing and Sequence Matching

R. Arratia, L. Gordon, and M. S. Waterman

Full-text: Open access

Abstract

We study approximations to the distribution of counts of matches in the best matching segment of specified length when comparing two long sequences of i.i.d. letters. The key tools used are large-deviation inequalities and the Chen-Stein method of Poisson approximation. The origin of the problem in molecular biology is indicated.

Article information

Source
Ann. Statist. Volume 18, Number 2 (1990), 539-570.

Dates
First available in Project Euclid: 12 April 2007

Permanent link to this document
http://projecteuclid.org/euclid.aos/1176347615

JSTOR
links.jstor.org

Digital Object Identifier
doi:10.1214/aos/1176347615

Mathematical Reviews number (MathSciNet)
MR1056326

Subjects
Primary: 62F05: Asymptotic properties of tests
Secondary: 92A10

Keywords
Moving average scan statistics sequence matching large deviations

Citation

Arratia, R.; Gordon, L.; Waterman, M. S. The Erdos-Renyi Law in Distribution, for Coin Tossing and Sequence Matching. The Annals of Statistics 18 (1990), no. 2, 539--570. doi:10.1214/aos/1176347615. http://projecteuclid.org/euclid.aos/1176347615.


Export citation