The Annals of Statistics

On the Limiting Distribution of and Critical Values for the Multivariate Cramer-Von Mises Statistic

Derek S. Cotterill and Miklos Csorgo

Full-text: Open access

Abstract

Let $Y_1, Y_2, \cdots, Y_n (n = 1, 2, \cdots)$ be independent random variables (r.v.'s) uniformly distributed over the $d$-dimensional unit cube, and let $\alpha_n(\cdot)$ be the empirical process based on this sequence of random samples. Let $V_{n, d}(\cdot)$ be the distribution function of the Cramer-von Mises functional of $\alpha_n(\cdot)$, and define $V_d(\cdot) = \lim_{n \rightarrow \infty} V_{n, d}(\cdot), \Delta_{n, d} = \sup_{0 < x < \infty}|V_{n, d}(x) - V_d(x)|$. We deduce that $\Delta_{n,d} = O(n^{-1}), d \geq 1$, and calculate also the "usual" levels of significance of the distribution function $V_d(\cdot)$ for $d = 2$ to 50, using expansion methods. Previously these were known only for $d = 1, 2, 3$.

Article information

Source
Ann. Statist. Volume 10, Number 1 (1982), 233-244.

Dates
First available in Project Euclid: 12 April 2007

Permanent link to this document
http://projecteuclid.org/euclid.aos/1176345706

JSTOR
links.jstor.org

Digital Object Identifier
doi:10.1214/aos/1176345706

Mathematical Reviews number (MathSciNet)
MR642735

Zentralblatt MATH identifier
0497.62024

Subjects
Primary: 62H10: Distribution of statistics
Secondary: 62H15: Hypothesis testing 60G15: Gaussian processes

Keywords
Multivariate Cramer-von Mises statistic invariance principles

Citation

Cotterill, Derek S.; Csorgo, Miklos. On the Limiting Distribution of and Critical Values for the Multivariate Cramer-Von Mises Statistic. Ann. Statist. 10 (1982), no. 1, 233--244. doi:10.1214/aos/1176345706. http://projecteuclid.org/euclid.aos/1176345706.


Export citation