Open Access
November, 1973 A New Nonparametric Estimator of the Center of a Symmetric Distribution
E. F. Schuster, J. A. Narvarte
Ann. Statist. 1(6): 1096-1104 (November, 1973). DOI: 10.1214/aos/1176342559

Abstract

Let $F_n(x)$ be the empirical distribution function based on a random sample of size $n$ from a continuous symmetric distribution with center $\theta$. As a nonparametric estimator of $\theta$, we propose $a^\ast$ where $a^\ast$ is chosen so as to minimize the function $h$ where $h(a) = \max_x |F_n(x) + F_n((2a - x)^-) - 1|$. In this paper we present an algorithm for constructing the interval of all $a$ which minimize $h$. We show that if $a^\ast$ is chosen as the center of this interval then $a^\ast$ is an unbiased estimator of $\theta$ which converges to $\theta$ with probability one at a rate of $n^{1/2-\delta}$ for $\delta > 0$. We then use the large or small sample distribution of $h(\theta)$ given by Butler (1969) to construct confidence intervals for $\theta$ and show how one can test for symmetry when the center is not specified under the null hypothesis.

Citation

Download Citation

E. F. Schuster. J. A. Narvarte. "A New Nonparametric Estimator of the Center of a Symmetric Distribution." Ann. Statist. 1 (6) 1096 - 1104, November, 1973. https://doi.org/10.1214/aos/1176342559

Information

Published: November, 1973
First available in Project Euclid: 12 April 2007

zbMATH: 0275.62034
MathSciNet: MR362681
Digital Object Identifier: 10.1214/aos/1176342559

Subjects:
Primary: 62G05

Keywords: center of symmetry , Empirical distribution function , nonparametric estimator , symmetric distribution

Rights: Copyright © 1973 Institute of Mathematical Statistics

Vol.1 • No. 6 • November, 1973
Back to Top