Abstract
Let $F_n(x)$ be the empirical distribution function based on a random sample of size $n$ from a continuous symmetric distribution with center $\theta$. As a nonparametric estimator of $\theta$, we propose $a^\ast$ where $a^\ast$ is chosen so as to minimize the function $h$ where $h(a) = \max_x |F_n(x) + F_n((2a - x)^-) - 1|$. In this paper we present an algorithm for constructing the interval of all $a$ which minimize $h$. We show that if $a^\ast$ is chosen as the center of this interval then $a^\ast$ is an unbiased estimator of $\theta$ which converges to $\theta$ with probability one at a rate of $n^{1/2-\delta}$ for $\delta > 0$. We then use the large or small sample distribution of $h(\theta)$ given by Butler (1969) to construct confidence intervals for $\theta$ and show how one can test for symmetry when the center is not specified under the null hypothesis.
Citation
E. F. Schuster. J. A. Narvarte. "A New Nonparametric Estimator of the Center of a Symmetric Distribution." Ann. Statist. 1 (6) 1096 - 1104, November, 1973. https://doi.org/10.1214/aos/1176342559
Information