The Annals of Statistics

Properties of principal component methods for functional and longitudinal data analysis

Peter Hall, Hans-Georg Müller, and Jane-Ling Wang

Full-text: Open access

Abstract

The use of principal component methods to analyze functional data is appropriate in a wide range of different settings. In studies of “functional data analysis,” it has often been assumed that a sample of random functions is observed precisely, in the continuum and without noise. While this has been the traditional setting for functional data analysis, in the context of longitudinal data analysis a random function typically represents a patient, or subject, who is observed at only a small number of randomly distributed points, with nonnegligible measurement error. Nevertheless, essentially the same methods can be used in both these cases, as well as in the vast number of settings that lie between them. How is performance affected by the sampling plan? In this paper we answer that question. We show that if there is a sample of n functions, or subjects, then estimation of eigenvalues is a semiparametric problem, with root-n consistent estimators, even if only a few observations are made of each function, and if each observation is encumbered by noise. However, estimation of eigenfunctions becomes a nonparametric problem when observations are sparse. The optimal convergence rates in this case are those which pertain to more familiar function-estimation settings. We also describe the effects of sampling at regularly spaced points, as opposed to random points. In particular, it is shown that there are often advantages in sampling randomly. However, even in the case of noisy data there is a threshold sampling rate (depending on the number of functions treated) above which the rate of sampling (either randomly or regularly) has negligible impact on estimator performance, no matter whether eigenfunctions or eigenvectors are being estimated.

Article information

Source
Ann. Statist. Volume 34, Number 3 (2006), 1493-1517.

Dates
First available in Project Euclid: 10 July 2006

Permanent link to this document
http://projecteuclid.org/euclid.aos/1152540756

Digital Object Identifier
doi:10.1214/009053606000000272

Mathematical Reviews number (MathSciNet)
MR2278365

Zentralblatt MATH identifier
1113.62073

Subjects
Primary: 62G08: Nonparametric regression 62H25: Factor analysis and principal components; correspondence analysis
Secondary: 62M09: Non-Markovian processes: estimation

Keywords
Biomedical studies curse of dimensionality eigenfunction eigenvalue eigenvector Karhunen–Loève expansion local polynomial methods nonparametric operator theory optimal convergence rate principal component analysis rate of convergence semiparametric sparse data spectral decomposition smoothing

Citation

Hall, Peter; Müller, Hans-Georg; Wang, Jane-Ling. Properties of principal component methods for functional and longitudinal data analysis. Ann. Statist. 34 (2006), no. 3, 1493--1517. doi:10.1214/009053606000000272. http://projecteuclid.org/euclid.aos/1152540756.


Export citation

References

  • Besse, P. and Ramsay, J. O. (1986). Principal components-analysis of sampled functions. Psychometrika 51 285--311.
  • Boente, G. and Fraiman, R. (2000). Kernel-based functional principal components. Statist. Probab. Lett. 48 335--345.
  • Bosq, D. (1991). Modelization, nonparametric estimation and prediction for continuous time processes. In Nonparametric Functional Estimation and Related Topics (G. Roussas, ed.) 509--529. Kluwer, Dordrecht.
  • Bosq, D. (2000). Linear Processes in Function Spaces. Theory and Applications. Lecture Notes in Statist. 149. Springer, New York.
  • Brumback, B. A. and Rice, J. A. (1998). Smoothing spline models for the analysis of nested and crossed samples of curves (with discussion). J. Amer. Statist. Assoc. 93 961--994.
  • Capra, W. B. and Müller, H.-G. (1997). An accelerated-time model for response curves. J. Amer. Statist. Assoc. 92 72--83.
  • Cardot, H. (2000). Nonparametric estimation of smoothed principal components analysis of sampled noisy functions. J. Nonparametr. Statist. 12 503--538.
  • Cardot, H., Ferraty, F. and Sarda, P. (2000). Étude asymptotique d'un estimateur spline hybride pour le modèle linéaire fonctionnel. C. R. Acad. Sci. Paris Sér. I Math. 330 501--504.
  • Cardot, H., Ferraty, F. and Sarda, P. (2003). Spline estimators for the functional linear model. Statist. Sinica 13 571--591.
  • Castro, P., Lawton, W. and Sylvestre, E. (1986). Principal modes of variation for processes with continuous sample curves. Technometrics 28 329--337.
  • Dauxois, J., Pousse, A. and Romain, Y. (1982). Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference. J. Multivariate Anal. 12 136--154.
  • Diggle, P., Heagerty, P., Liang, K.-Y. and Zeger, S. (2002). Analysis of Longitudinal Data, 2nd ed. Oxford Univ. Press.
  • Fan, J. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32 928--961.
  • Girard, S. (2000). A nonlinear PCA based on manifold approximation. Comput. Statist. 15 145--167.
  • Hall, P. and Hosseini-Nasab, M. (2006). On properties of functional principal components analysis. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 109--126.
  • Indritz, J. (1963). Methods in Analysis. Macmillan, New York.
  • James, G. M., Hastie, T. J. and Sugar, C. A. (2000). Principal component models for sparse functional data. Biometrika 87 587--602.
  • Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 295--327.
  • Jones, M. C. and Rice, J. (1992). Displaying the important features of large collections of similar curves. Amer. Statist. 46 140--145.
  • Jones, R. H. (1993). Longitudinal Data with Serial Correlation: A State-Space Approach. Chapman and Hall, London.
  • Kneip, A. and Utikal, K. J. (2001). Inference for density families using functional principal component analysis (with discussion). J. Amer. Statist. Assoc. 96 519--542.
  • Lin, X. and Carroll, R. J. (2000). Nonparametric function estimation for clustered data when the predictor is measured without/with error. J. Amer. Statist. Assoc. 95 520--534.
  • Mas, A. and Menneteau, L. (2003). Perturbation approach applied to the asymptotic study of random operators. In High Dimensional Probability. III (J. Hoffmann-Jørgensen, M. B. Marcus and J. A. Wellner, eds.) 127--134. Birkhäuser, Basel.
  • Müller, H.-G. (2005). Functional modeling and classification of longitudinal data (with discussion). Scand. J. Statist. 32 223--246.
  • Pezzulli, S. and Silverman, B. W. (1993). Some properties of smoothed principal components analysis for functional data. Comput. Statist. 8 1--16.
  • Ramsay, J. O. and Ramsey, J. B. (2002). Functional data analysis of the dynamics of the monthly index of nondurable goods production. J. Econometrics 107 327--344.
  • Ramsay, J. O. and Silverman, B. W. (2002). Applied Functional Data Analysis: Methods and Case Studies. Springer, New York.
  • Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed. Springer, New York.
  • Rao, C. R. (1958). Some statistical models for comparison of growth curves. Biometrics 14 1--17.
  • Rice, J. A. (1986). Convergence rates for partially splined models. Statist. Probab. Lett. 4 203--208.
  • Rice, J. A. (2004). Functional and longitudinal data analysis: Perspectives on smoothing. Statist. Sinica 14 631--647.
  • Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. J. Roy. Statist. Soc. Ser. B 53 233--243.
  • Rice, J. A. and Wu, C. O. (2001). Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 57 253--259.
  • Shi, M., Weiss, R. E. and Taylor, J. M. G. (1996). An analysis of paediatric CD4 counts for acquired immune deficiency syndrome using flexible random curves. Appl. Statist. 45 151--163.
  • Staniswalis, J. G. and Lee, J. J. (1998). Nonparametric regression analysis of longitudinal data. J. Amer. Statist. Assoc. 93 1403--1418.
  • Stone, C. J. (1980). Optimal rates of convergence for nonparametric estimators. Ann. Statist. 8 1348--1360.
  • Yao, F., Müller, H.-G., Clifford, A. J., Dueker, S. R., Follett, J., Lin, Y., Buchholz, B. A. and Vogel, J. S. (2003). Shrinkage estimation for functional principal component scores, with application to the population kinetics of plasma folate. Biometrics 59 676--685.
  • Yao, F., Müller, H.-G. and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc. 100 577--590.