The Annals of Statistics

Martingale transforms goodness-of-fit tests in regression models

Estate V. Khmaladze and Hira L. Koul

Full-text: Open access

Abstract

This paper discusses two goodness-of-fit testing problems. The first problem pertains to fitting an error distribution to an assumed nonlinear parametric regression model, while the second pertains to fitting a parametric regression model when the error distribution is unknown. For the first problem the paper contains tests based on a certain martingale type transform of residual empirical processes. The advantage of this transform is that the corresponding tests are asymptotically distribution free. For the second problem the proposed asymptotically distribution free tests are based on innovation martingale transforms. A Monte Carlo study shows that the simulated level of the proposed tests is close to the asymptotic level for moderate sample sizes.

Article information

Source
Ann. Statist. Volume 32, Number 3 (2004), 995-1034.

Dates
First available in Project Euclid: 24 May 2004

Permanent link to this document
http://projecteuclid.org/euclid.aos/1085408493

Digital Object Identifier
doi:10.1214/009053604000000274

Mathematical Reviews number (MathSciNet)
MR2065196

Zentralblatt MATH identifier
02100791

Subjects
Primary: 62G10: Hypothesis testing
Secondary: 62J02: General nonlinear regression

Keywords
Asymptotically distribution free partial sum processes

Citation

Khmaladze, Estate V.; Koul, Hira L. Martingale transforms goodness-of-fit tests in regression models. Ann. Statist. 32 (2004), no. 3, 995--1034. doi:10.1214/009053604000000274. http://projecteuclid.org/euclid.aos/1085408493.


Export citation

References

  • An, H. Z. and Cheng, B. (1991). A Kolmogorov--Smirnov type statistic with application to test for nonlinearity in time series. Internat. Statist. Rev. 59 287--307.
  • Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. (1998). Efficient and Adaptive Estimation for Semi-Parametric Models. Springer, New York.
  • Boldin, M. V. (1982). Estimation of the distribution of noise in an autoregressive scheme. Theor. Probab. Appl. 27 866--871.
  • Cox, D., Koh, E., Wahba, G. and Yandell, B. S. (1988). Testing the (parametric) null model hypothesis in (semiparametric) partial and generalized spline models. Ann. Statist. 16 113--119.
  • D'Agostino, R. B. and Stephens, M. A., eds. (1986). Goodness-of-Fit Techniques. Dekker, New York.
  • Durbin, J. (1973). Distribution Theory for Tests Based on the Sample Distribution Function. SIAM, Philadelphia.
  • Durbin, J., Knott, M. and Taylor, C. C. (1975). Components of Cramér--von Mises statistics. II. J. Roy. Statist. Soc. Ser. B 37 216--237.
  • Eubank, R. L. and Hart, J. D. (1992). Testing goodness-of-fit in regression via order selection criteria. Ann. Statist. 20 1412--1425.
  • Eubank, R. L. and Hart, J. D. (1993). Commonality of cusum, von Neumann and smoothing- based goodness-of-fit tests. Biometrika 80 89--98.
  • Eubank, R. L. and Spiegelman, C. H. (1990). Testing the goodness of fit of a linear model via nonparametric regression techniques. J. Amer. Statist. Assoc. 85 387--392.
  • Hájek, J. (1972). Local asymptotic minimax and admissibility in estimation. Proc. Sixth Berkeley Symposium Math. Statist. Probab. 1 175--194. Univ. California Press, Berkeley.
  • Hájek, J. and Sǐdák, Z. (1967). Theory of Rank Tests. Academic Press, New York.
  • Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 1926--1947.
  • Hart, J. D. (1997). Nonparametric Smoothing and Lack-of-Fit Tests. Springer, New York.
  • Khmaladze, E. V. (1979). The use of $\omega^2$-tests for testing parametric hypotheses. Theory Probab. Appl. 24 283--301.
  • Khmaladze, E. V. (1981). A martingale approach in the theory of goodness-of-fit tests. Theory Probab. Appl. 26 240--257.
  • Khmaladze, E. V. (1993). Goodness of fit problem and scanning innovation martingales. Ann. Statist. 21 798--829.
  • Khmaladze, E. and Shinjikashvili, E. (2001). Calculation of noncrossing probabilities for Poisson processes and its corollaries. Adv. in Appl. Probab. 33 702--716.
  • Koenker, R. and Xiao, Z. (2001). Inference on the quantile regression process: Appendices. Available at www.econ.uiuc.edu/~roger/research/inference/interence.html.
  • Koenker, R. and Xiao, Z. (2002). Inference on the quantile regression process. Econometrica 70 1583--1612.
  • Koul, H. L. (1991). A weak convergence result useful in robust autoregression. J. Statist. Plann. Inference 29 291--308.
  • Koul, H. L. (1992). Weighted Empiricals and Linear Models. IMS, Hayward, CA.
  • Koul, H. L. (1996). Asymptotics of some estimators and sequential residual empiricals in nonlinear time series. Ann. Statist. 24 380--404.
  • Koul, H. L. (2002). Weighted Empirical Processes in Dynamic Nonlinear Models, 2nd ed. Lecture Notes in Statist. 166. Springer, New York.
  • Koul, H. L. and Ni, P. (2004). Minimum distance regression model checking. J. Statist. Plann. Inference 119 109--144.
  • Koul, H. L. and Ossiander, M. (1994). Weak convergence of randomly weighted dependent residual empiricals with applications to autoregression. Ann. Statist. 22 540--562.
  • Koul, H. L. and Stute, W. (1999). Nonparametric model checks for time series. Ann. Statist. 27 204--237.
  • Liptser, R. S. and Shiryayev, A. N. (1977). Statistics of Random Processes 1. Springer, New York.
  • Liptser, R. S. and Shiryayev, A. N. (1989). Theory of Martingales. Kluwer, Dordrecht.
  • Loynes, R. M. (1980). The empirical distribution function of residuals from generalised regression. Ann. Statist. 8 285--298.
  • MacKinnon, J. G. (1992). Model specification tests and artificial regressions. J. Economic Literature 30 102--146.
  • Moore, D. S. (1986). Tests of chi-square typed. In Goodness-of-Fit Techniques (R. B. D'Agostino and M. A. Stephens, eds.) 63--95. Dekker, New York.
  • Nikulin, M. S. (1973). The chi-square test for continuous distributions with location and scale parameters. Theor. Probab. Appl. 18 583--592.
  • Stute, W. (1997). Nonparametric model checks for regression. Ann. Statist. 25 613--641.
  • Stute, W., González Manteiga, W. and Presedo Quindimil, M. (1998). Bootstrap approximations in model checks for regression. J. Amer. Statist. Assoc. 93 141--149.
  • Stute, W., Thies, S. and Zhu, L.-X. (1998). Model checks for regression: An innovation process approach. Ann. Statist. 26 1916--1934.
  • Stute, W. and Zhu, L.-X. (2002). Model checks for generalized linear models. Scand. J. Statist. 29 535--545.
  • Tsigroshvili, Z. (1998). Some notes on goodness-of-fit tests and innovation martingales. Proc. A. Razmadze Math. Inst. 117 89--102.
  • van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes with Applications to Statistics. Springer, New York.