The Annals of Statistics

Universal optimality of balanced uniform crossover designs

A. S. Hedayat and Min Yang

Full-text: Open access

Abstract

Kunert [Ann. Statist. 12 (1984) 1006-1017] proved that, in the class of repeated measurement designs based on t treatments, p=t periods and $n=\lambda t$ experimental units, a balanced uniform design is universally optimal for direct treatment effects if $t \geq 3$ and $\lambda=1$, or if $t \geq 6$ and $\lambda=2$. This result is generalized to $t \geq 3$ as long as $\lambda \leq (t-1)/2$.

Article information

Source
Ann. Statist. Volume 31, Number 3 (2003), 978-983.

Dates
First available: 25 June 2003

Permanent link to this document
http://projecteuclid.org/euclid.aos/1056562469

Digital Object Identifier
doi:10.1214/aos/1056562469

Mathematical Reviews number (MathSciNet)
MR1994737

Zentralblatt MATH identifier
1028.62060

Subjects
Primary: 62K05: Optimal designs
Secondary: 62K10: Block designs

Keywords
Balanced design crossover design carryover effect repeated measurements

Citation

Hedayat, A. S.; Yang, Min. Universal optimality of balanced uniform crossover designs. The Annals of Statistics 31 (2003), no. 3, 978--983. doi:10.1214/aos/1056562469. http://projecteuclid.org/euclid.aos/1056562469.


Export citation

References

  • CARRIÈRE, K. C. and REINSEL, G. C. (1993). Optimal two-period repeated measurement designs with two or more treatments. Biometrika 80 924-929.
  • CHENG, C.-S. and WU, C.-F. (1980). Balanced repeated measurement designs. Ann. Statist. 8 1272-1283. [Corrigendum. Ann. Statist. 11 (1983) 349.]
  • HEDAy AT, A. and AFSARINEJAD, K. (1975). Repeated measurements designs. I. In A Survey of Statistical Design and Linear Models (J. N. Srivastava, ed.) 229-242. North-Holland, Amsterdam.
  • HEDAy AT, A. and AFSARINEJAD, K. (1978). Repeated measurements designs. II. Ann. Statist. 6 619-628.
  • HEDAy AT, A. and ZHAO, W. (1990). Optimal two-period repeated measurements designs. Ann. Statist. 18 1805-1816. [Corrigendum. Ann. Statist. 20 (1992) 619.]
  • HIGHAM, J. (1998). Row-complete Latin squares of every composite order exist. J. Combin. Des. 6 63-77.
  • KIEFER, J. (1975). Construction and optimality of generalized Youden designs. In A Survey of Statistical Design and Linear Models (J. N. Srivastava, ed.) 333-353. North-Holland, Amsterdam.
  • KUNERT, J. (1983). Optimal design and refinement of the linear model with applications to repeated measurements designs. Ann. Statist. 11 247-257.
  • KUNERT, J. (1984). Optimality of balanced uniform repeated measurements designs. Ann. Statist. 12 1006-1017.
  • KUSHNER, H. B. (1997). Optimal repeated measurements designs: The linear optimality equations. Ann. Statist. 25 2328-2344. [Corrigendum. Ann. Statist. 26 (1998) 2081.]
  • KUSHNER, H. B. (1998). Optimal and efficient repeated-measurements designs for uncorrelated observations. J. Amer. Statist. Assoc. 93 1176-1187.
  • MATTHEWS, J. N. S. (1994). Modeling and optimality in the design of crossover studies for medical applications. J. Statist. Plann. Inference 42 89-108.
  • STREET, D. J., ECCLESTON, J. A. and WILSON, W. H. (1990). Tables of small optimal repeated measurements designs. Austral. J. Statist. 32 345-359.
  • STUFKEN, J. (1991). Some families of optimal and efficient repeated measurements designs. J. Statist. Plann. Inference 27 75-83.
  • STUFKEN, J. (1996). Optimal crossover designs. In Design and Analy sis of Experiments. Handbook of Statistics 13 (S. Ghosh and C. R. Rao, eds.) 63-90. North-Holland, Amsterdam.
  • DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE UNIVERSITY OF ILLINOIS 851 SOUTH MORGAN STREET
  • CHICAGO, ILLINOIS 60607-7045 E-MAIL: heday at@uic.edu DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF NEBRASKA 810 OLDFATHER HALL
  • LINCOLN, NEBRASKA 68588-0323 E-MAIL: my ang@math.unl.edu