Abstract
We prove a refinement of the inequality by Hoffmann–Jørgensen that is significant for three reasons. First, our result improves on the state-of-the-art even for real-valued random variables. Second, the result unifies several versions in the Banach space literature, including those by Johnson and Schechtman [Ann. Probab. 17 (1989) 789–808], Klass and Nowicki [Ann. Probab. 28 (2000) 851–862], and Hitczenko and Montgomery-Smith [Ann. Probab. 29 (2001) 447–466]. Finally, we show that the Hoffmann–Jørgensen inequality (including our generalized version) holds not only in Banach spaces but more generally, in a very primitive mathematical framework required to state the inequality: a metric semigroup $\mathscr{G}$. This includes normed linear spaces as well as all compact, discrete or (connected) abelian Lie groups.
Citation
Apoorva Khare. Bala Rajaratnam. "The Hoffmann–Jørgensen inequality in metric semigroups." Ann. Probab. 45 (6A) 4101 - 4111, November 2017. https://doi.org/10.1214/16-AOP1160
Information