The Annals of Probability

The Hausdorff dimension of the CLE gasket

Jason Miller, Nike Sun, and David B. Wilson

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The conformal loop ensemble $\mathrm{CLE}_{\kappa}$ is the canonical conformally invariant probability measure on noncrossing loops in a proper simply connected domain in the complex plane. The parameter $\kappa$ varies between $8/3$ and $8$; $\mathrm{CLE}_{8/3}$ is empty while $\mathrm{CLE}_{8}$ is a single space-filling loop. In this work, we study the geometry of the $\mathrm{CLE}$ gasket, the set of points not surrounded by any loop of the $\mathrm{CLE}$. We show that the almost sure Hausdorff dimension of the gasket is bounded from below by $2-(8-\kappa)(3\kappa-8)/(32\kappa)$ when $4<\kappa<8$. Together with the work of Schramm–Sheffield–Wilson [Comm. Math. Phys. 288 (2009) 43–53] giving the upper bound for all $\kappa$ and the work of Nacu–Werner [J. Lond. Math. Soc. (2) 83 (2011) 789–809] giving the matching lower bound for $\kappa\le4$, this completes the determination of the $\mathrm{CLE}_{\kappa}$ gasket dimension for all values of $\kappa$ for which it is defined. The dimension agrees with the prediction of Duplantier–Saleur [Phys. Rev. Lett. 63 (1989) 2536–2537] for the FK gasket.

Article information

Ann. Probab. Volume 42, Number 4 (2014), 1644-1665.

First available in Project Euclid: 3 July 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J67: Stochastic (Schramm-)Loewner evolution (SLE)
Secondary: 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65]

Schramm–Loewner evolution (SLE) conformal loop ensemble (CLE) gasket


Miller, Jason; Sun, Nike; Wilson, David B. The Hausdorff dimension of the CLE gasket. Ann. Probab. 42 (2014), no. 4, 1644--1665. doi:10.1214/12-AOP820.

Export citation


  • [1] Benoist, S., Duminil-Copin, H. and Hongler, C. (2013). Unpublished manuscript.
  • [2] Camia, F. and Newman, C. M. (2006). Two-dimensional critical percolation: The full scaling limit. Comm. Math. Phys. 268 1–38.
  • [3] Camia, F. and Newman, C. M. (2007). Critical percolation exploration path and $\mathrm{SLE}_{6}$: A proof of convergence. Probab. Theory Related Fields 139 473–519.
  • [4] Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A. and Smirnov, S. (2013). Convergence of Ising interfaces to Schramm’s SLEs. Unpublished manuscript.
  • [5] Chelkak, D. and Smirnov, S. (2012). Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189 515–580.
  • [6] Dembo, A., Peres, Y., Rosen, J. and Zeitouni, O. (2004). Cover times for Brownian motion and random walks in two dimensions. Ann. of Math. (2) 160 433–464.
  • [7] Duplantier, B. (1990). Exact fractal area of two-dimensional vesicles. Phys. Rev. Lett. 64 493.
  • [8] Duplantier, B. and Saleur, H. (1989). Exact fractal dimension of 2D Ising clusters. Comment on: “Scaling and fractal dimension of Ising clusters at the $d=2$ critical point” [Phys. Rev. Lett. 62 (1989) 1067–1070] by A. L. Stella and C. Vanderzande. Phys. Rev. Lett. 63 2536–2537.
  • [9] Garban, C., Rohde, S. and Schramm, O. (2012). Continuity of the SLE trace in simply connected domains. Israel J. Math. 187 23–36.
  • [10] Hu, X., Miller, J. and Peres, Y. (2010). Thick points of the Gaussian free field. Ann. Probab. 38 896–926.
  • [11] Kager, W. and Nienhuis, B. (2004). A guide to stochastic Löwner evolution and its applications. J. Stat. Phys. 115 1149–1229.
  • [12] Kemppainen, A. and Smirnov, S. (2013). Unpublished manuscript.
  • [13] Lawler, G., Schramm, O. and Werner, W. (2003). Conformal restriction: The chordal case. J. Amer. Math. Soc. 16 917–955 (electronic).
  • [14] Lawler, G. F. (2011). Continuity of radial and two-sided radial $\mathrm{SLE}_{\kappa}$ at the terminal point. Preprint. Available at arXiv:1104.1620.
  • [15] Lawler, G. F. (2005). Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs 114. Amer. Math. Soc., Providence, RI.
  • [16] Lawler, G. F., Schramm, O. and Werner, W. (2002). One-arm exponent for critical 2D percolation. Electron. J. Probab. 7 13 pp. (electronic).
  • [17] Lawler, G. F., Schramm, O. and Werner, W. (2004). Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32 939–995.
  • [18] Miller, J. (2010). Universality for $\mathrm{SLE}_{4}$. Preprint. Available at arXiv:1010.1356.
  • [19] Miller, J. and Sheffield, S. (2012). ${\mathrm{CLE}}_{4}$ and the Gaussian free field. Unpublished manuscript.
  • [20] Miller, J. and Sheffield, S. (2012). Imaginary geometry I: Interacting $\mathrm{SLE}$ paths. Preprint. Available at arXiv:1201.1496.
  • [21] Miller, J. and Sheffield, S. (2012). Imaginary geometry III: Reversibility of $\mathrm{SLE} _{\kappa}$ for $\kappa\in(4,8)$. Preprint. Available at arXiv:1201.1498.
  • [22] Mörters, P. and Peres, Y. (2010). Brownian Motion. Cambridge Univ. Press, Cambridge.
  • [23] Nacu, Ş. and Werner, W. (2011). Random soups, carpets and fractal dimensions. J. Lond. Math. Soc. (2) 83 789–809.
  • [24] Pommerenke, C. (1975). Univalent Functions. Vandenhoeck & Ruprecht, Göttingen.
  • [25] Pommerenke, C. (1992). Boundary Behaviour of Conformal Maps. Grundlehren der Mathematischen Wissenschaften 299. Springer, Berlin.
  • [26] Rohde, S. and Schramm, O. (2005). Basic properties of SLE. Ann. of Math. (2) 161 883–924.
  • [27] Schramm, O. (2000). Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 221–288.
  • [28] Schramm, O. and Sheffield, S. (2009). Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202 21–137.
  • [29] Schramm, O., Sheffield, S. and Wilson, D. B. (2009). Conformal radii for conformal loop ensembles. Comm. Math. Phys. 288 43–53.
  • [30] Schramm, O. and Wilson, D. B. (2005). SLE coordinate changes. New York J. Math. 11 659–669 (electronic).
  • [31] Sheffield, S. (2009). Exploration trees and conformal loop ensembles. Duke Math. J. 147 79–129.
  • [32] Sheffield, S. and Werner, W. (2012). Conformal loop ensembles: The Markovian characterization and the loop-soup construction. Ann. of Math. (2) 176 1827–1917.
  • [33] Smirnov, S. (2005). Critical percolation and conformal invariance. In XIVth International Congress on Mathematical Physics 99–112. World Sci. Publ., Hackensack, NJ.
  • [34] Smirnov, S. (2010). Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. of Math. (2) 172 1435–1467.
  • [35] Werner, W. (2003). SLEs as boundaries of clusters of Brownian loops. C. R. Math. Acad. Sci. Paris 337 481–486.
  • [36] Werner, W. (2004). Random planar curves and Schramm–Loewner evolutions. In Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1840 107–195. Springer, Berlin.
  • [37] Werner, W. and Wu, H. (2013). On conformally invariant CLE explorations. Comm. Math. Phys. 320 637–661.
  • [38] Whyburn, G. T. (1942). Analytic Topology. American Mathematical Society Colloquium Publications 28. Amer. Math. Soc., New York.