Abstract
In this paper we study the Poisson process over a $\sigma$-finite measure-space equipped with a measure preserving transformation or a group of measure preserving transformations. For a measure-preserving transformation $T$ acting on a $\sigma$-finite measure-space $X$, the Poisson suspension of $T$ is the associated probability preserving transformation $T_{*}$ which acts on realization of the Poisson process over $X$. We prove ergodicity of the Poisson-product $T\times T_{*}$ under the assumption that $T$ is ergodic and conservative. We then show, assuming ergodicity of $T\times T_{*}$, that it is impossible to deterministically perform natural equivariant operations: thinning, allocation or matching. In contrast, there are well-known results in the literature demonstrating the existence of isometry equivariant thinning, matching and allocation of homogenous Poisson processes on $\mathbb{R}^{d}$. We also prove ergodicity of the “first return of left-most transformation” associated with a measure preserving transformation on $\mathbb{R}_{+}$, and discuss ergodicity of the Poisson-product of measure preserving group actions, and related spectral properties.
Citation
Tom Meyerovitch. "Ergodicity of Poisson products and applications." Ann. Probab. 41 (5) 3181 - 3200, September 2013. https://doi.org/10.1214/12-AOP824
Information