Open Access
May 2013 Stochastic geometric wave equations with values in compact Riemannian homogeneous spaces
Zdzisław Brzeźniak, Martin Ondreját
Ann. Probab. 41(3B): 1938-1977 (May 2013). DOI: 10.1214/11-AOP690

Abstract

Let $M$ be a compact Riemannian homogeneous space (e.g., a Euclidean sphere). We prove existence of a global weak solution of the stochastic wave equation $\mathbf{D}_{t}\partial_{t}u=\sum_{k=1}^{d}\mathbf{D}_{x_{k}}\partial_{x_{k}}u+f_{u}(Du)+g_{u}(Du)\dot{W}$ in any dimension $d\ge1$, where $f$ and $g$ are continuous multilinear maps, and $W$ is a spatially homogeneous Wiener process on $\mathbb{R}^{d}$ with finite spectral measure. A nonstandard method of constructing weak solutions of SPDEs, that does not rely on martingale representation theorem, is employed.

Citation

Download Citation

Zdzisław Brzeźniak. Martin Ondreját. "Stochastic geometric wave equations with values in compact Riemannian homogeneous spaces." Ann. Probab. 41 (3B) 1938 - 1977, May 2013. https://doi.org/10.1214/11-AOP690

Information

Published: May 2013
First available in Project Euclid: 15 May 2013

zbMATH: 1286.60058
MathSciNet: MR3098063
Digital Object Identifier: 10.1214/11-AOP690

Subjects:
Primary: 60H15
Secondary: 35L05 , 35R60 , 58J65

Keywords: homogeneous space , Riemannian manifold , Stochastic wave equation

Rights: Copyright © 2013 Institute of Mathematical Statistics

Vol.41 • No. 3B • May 2013
Back to Top