The Annals of Probability

A natural parametrization for the Schramm–Loewner evolution

Gregory F. Lawler and Scott Sheffield

Full-text: Open access


The Schramm–Loewner evolution (SLEκ) is a candidate for the scaling limit of random curves arising in two-dimensional critical phenomena. When κ < 8, an instance of SLEκ is a random planar curve with almost sure Hausdorff dimension d = 1 + κ/8 < 2. This curve is conventionally parametrized by its half plane capacity, rather than by any measure of its d-dimensional volume.

For κ<8, we use a Doob–Meyer decomposition to construct the unique (under mild assumptions) Markovian parametrization of SLEκ that transforms like a d-dimensional volume measure under conformal maps. We prove that this parametrization is nontrivial (i.e., the curve is not entirely traversed in zero time) for $\kappa\textless 4(7-\sqrt{33})=5.021\ldots$.

Article information

Ann. Probab. Volume 39, Number 5 (2011), 1896-1937.

First available in Project Euclid: 18 October 2011

Permanent link to this document

Digital Object Identifier

Zentralblatt MATH identifier

Mathematical Reviews number (MathSciNet)

Primary: 60J67: Stochastic (Schramm-)Loewner evolution (SLE)

Schramm–Loewner evolution natural parametrization


Lawler, Gregory F.; Sheffield, Scott. A natural parametrization for the Schramm–Loewner evolution. The Annals of Probability 39 (2011), no. 5, 1896--1937. doi:10.1214/10-AOP560.

Export citation


  • [1] Alberts, T. and Sheffield, S. (2011). The covariant measure of SLE on the boundary. Probab. Theory Related Fields 149 331–371.
  • [2] Bass, R. F. (1995). Probabilistic Techniques in Analysis. Springer, New York.
  • [3] Beffara, V. (2008). The dimension of the SLE curves. Ann. Probab. 36 1421–1452.
  • [4] Dellacherie, C. and Meyer, P.-A. (1982). Probabilities and Potential. B. North-Holland Mathematics Studies 72. North-Holland, Amsterdam.
  • [5] Kennedy, T. (2007). The length of an SLE—Monte Carlo studies. J. Stat. Phys. 128 1263–1277.
  • [6] Lawler, G. F. (2009). Multifractal analysis of the reverse flow for the Schramm–Loewner evolution. Progr. Probab. 61 73–107.
  • [7] Lawler, G. F. (2005). Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs 114. Amer. Math. Soc., Providence, RI.
  • [8] Lawler, G., Schramm, O. and Werner, W. (2003). Conformal restriction: The chordal case. J. Amer. Math. Soc. 16 917–955 (electronic).
  • [9] Lawler, G. F., Schramm, O. and Werner, W. (2004). Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32 939–995.
  • [10] Lawler, G. F., Schramm, O. and Werner, W. (2004). On the scaling limit of planar self-avoiding walk. In Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2. Proc. Sympos. Pure Math. 72 339–364. Amer. Math. Soc., Providence, RI.
  • [11] Meyer, P.-A. (1966). Probability and Potentials. Blaisdell Waltham, MA.
  • [12] Rohde, S. and Schramm, O. (2005). Basic properties of SLE. Ann. of Math. (2) 161 883–924.
  • [13] Schramm, O. (2000). Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 221–288.
  • [14] Schramm, O. and Sheffield, S. (2005). Harmonic explorer and its convergence to SLE4. Ann. Probab. 33 2127–2148.
  • [15] Schramm, O., Sheffield, S. and Wilson, D. B. (2009). Conformal radii for conformal loop ensembles. Comm. Math. Phys. 288 43–53.
  • [16] Smirnov, S. (2001). Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333 239–244.
  • [17] Smirnov, S. (2010). Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. of Math (2) 172 1435–1467.