The Annals of Probability

Slow movement of random walk in random environment on a regular tree

Yueyun Hu and Zhan Shi

Full-text: Open access


We consider a recurrent random walk in a random environment on a regular tree. Under suitable general assumptions concerning the distribution of the environment, we show that the walk exhibits an unusually slow movement: the order of magnitude of the walk in the first n steps is (log n)3.

Article information

Ann. Probab. Volume 35, Number 5 (2007), 1978-1997.

First available in Project Euclid: 5 September 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K37: Processes in random environments 60G50: Sums of independent random variables; random walks 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)

Random walk in random environment slow movement tree branching random walk


Hu, Yueyun; Shi, Zhan. Slow movement of random walk in random environment on a regular tree. Ann. Probab. 35 (2007), no. 5, 1978--1997. doi:10.1214/009117906000001150.

Export citation


  • Biggins, J. D. (1976). The first- and last-birth problems for a multitype age-dependent branching process. Adv. in Appl. Probab. 8 446--459.
  • Biggins, J. D. and Kyprianou, A. E. (1997). Seneta--Heyde norming in the branching random walk. Ann. Probab. 25 337--360.
  • Biggins, J. D. and Kyprianou, A. E. (2005). Fixed points of the smoothing transform: The boundary case. Electron. J. Probab. 10 609--631.
  • Bingham, N. H. and Doney, R. A. (1975). Asymptotic properties of supercritical branching processes. II. Crump--Mode and Jirina processes. Adv. in Appl. Probab. 7 66--82.
  • Bramson, M. D. (1978). Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math. 31 531--581.
  • Durrett, R. and Liggett, T. M. (1983). Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebiete 64 275--301.
  • Hammersley, J. M. (1974). Postulates for subadditive processes. Ann. Probab. 2 652--680.
  • Hu, Y. and Shi, Z. (1998). The limits of Sinai's simple random walk in random environment. Ann. Probab. 26 1477--1521.
  • Hu, Y. and Shi, Z. (2006+). A sub-diffusive behaviour of recurrent random walk in random environment on a regular tree. Available at
  • Kesten, H., Kozlov, M. V. and Spitzer, F. (1975). A limit law for random walk in a random environment. Compositio Math. 30 145--168.
  • Kingman, J. F. C. (1975). The first birth problem for an age-dependent branching process. Ann. Probab. 3 790--801.
  • Liu, Q. S. (2000). On generalized multiplicative cascades. Stoch. Proc. Appl. 86 263--286.
  • Liu, Q. S. (2001). Asymptotic properties and absolute continuity of laws stable by random weighted mean. Stoch. Proc. Appl. 95 83--107.
  • Lyons, R. and Pemantle, R. (1992). Random walk in a random environment and first-passage percolation on trees. Ann. Probab. 20 125--136.
  • McDiarmid, C. (1995). Minimal positions in a branching random walk. Ann. Appl. Probab. 5 128--139.
  • Menshikov, M. V. and Petritis, D. (2002). On random walks in random environment on trees and their relationship with multiplicative chaos. In Mathematics and Computer Science II (Versailles, 2002) 415--422. Birkhäuser, Basel.
  • Mogul'skii, A. A. (1974). Small deviations in a space of trajectories. Theory Probab. Appl. 19 726--736.
  • Neveu, J. (1988). Multiplicative martingales for spatial branching processes. In Seminar on Stochastic Processes 1987 (E. Çinlar et al., eds.). Progr. Probab. Statist. 15 223--242. Birkhäuser, Boston.
  • Pemantle, R. and Peres, Y. (1995). Critical random walk in random environment on trees. Ann. Probab. 23 105--140.
  • Rozikov, U. A. (2001). Random walks in random environments on the Cayley tree. Ukrainian Math. J. 53 1688--1702.
  • Sinai, Ya. G. (1982). The limit behavior of a one-dimensional random walk in a random environment. Theory Probab. Appl. 27 247--258.
  • Zeitouni, O. (2004). Random walks in random environment. In École d'Été St-Flour 2001. Lecture Notes in Math. 1837 189--312. Springer, Berlin.