Open Access
August, 1977 Hausdorff Measure Properties of the Asymmetric Cauchy Processes
William E. Pruitt, S. James Taylor
Ann. Probab. 5(4): 608-615 (August, 1977). DOI: 10.1214/aop/1176995771

Abstract

The function $\varphi(h) = h/|\log h|$ is shown to be an exact Hausdorff measure function for the range of all strictly asymmetric Cauchy processes in $R^k, k \geqq 2$. The same function is also shown to correctly measure the graph of any strictly asymmetric Cauchy process.

Citation

Download Citation

William E. Pruitt. S. James Taylor. "Hausdorff Measure Properties of the Asymmetric Cauchy Processes." Ann. Probab. 5 (4) 608 - 615, August, 1977. https://doi.org/10.1214/aop/1176995771

Information

Published: August, 1977
First available in Project Euclid: 19 April 2007

zbMATH: 0371.60049
MathSciNet: MR443103
Digital Object Identifier: 10.1214/aop/1176995771

Subjects:
Primary: 60G17
Secondary: 60J30

Keywords: Correct measure functions , graph , ‎range‎

Rights: Copyright © 1977 Institute of Mathematical Statistics

Vol.5 • No. 4 • August, 1977
Back to Top