Abstract
The function $\varphi(h) = h/|\log h|$ is shown to be an exact Hausdorff measure function for the range of all strictly asymmetric Cauchy processes in $R^k, k \geqq 2$. The same function is also shown to correctly measure the graph of any strictly asymmetric Cauchy process.
Citation
William E. Pruitt. S. James Taylor. "Hausdorff Measure Properties of the Asymmetric Cauchy Processes." Ann. Probab. 5 (4) 608 - 615, August, 1977. https://doi.org/10.1214/aop/1176995771
Information