## The Annals of Probability

- Ann. Probab.
- Volume 7, Number 4 (1979), 731-737.

### How Big are the Increments of a Wiener Process?

#### Abstract

Let $\beta_T = (2a_T\lbrack\log(T/a_T) + \log\log T\rbrack)^{-\frac{1}{2}}, 0 < a_T \leqslant T < \infty$ and $\{W(t); 0 \leqslant t < \infty\}$ be a standard Wiener process. This paper studies the almost sure limiting behaviour of $\sup_{0\leqslant t\leqslant T-a_T} \beta_T|W(t + a_T) - W(t)|$ as $T \rightarrow \infty$ under varying conditions on $a_T = c \log T, c > 0$, the Erdos-Renyi law of large numbers for the Wiener process. A number of other results for the Wiener process also follow via choosing $a_T$ appropriately. Connections with strong invariance principles and the P. Levy modulus of continuity for $W(t)$ are also established.

#### Article information

**Source**

Ann. Probab. Volume 7, Number 4 (1979), 731-737.

**Dates**

First available: 19 April 2007

**Permanent link to this document**

http://projecteuclid.org/euclid.aop/1176994994

**JSTOR**

links.jstor.org

**Digital Object Identifier**

doi:10.1214/aop/1176994994

**Mathematical Reviews number (MathSciNet)**

MR537218

**Subjects**

Primary: 60F15: Strong theorems

Secondary: 60G15: Gaussian processes 60G17: Sample path properties

**Keywords**

Increments of a Wiener process law of iterated logarithm

#### Citation

Csorgo, M.; Revesz, P. How Big are the Increments of a Wiener Process?. The Annals of Probability 7 (1979), no. 4, 731--737. doi:10.1214/aop/1176994994. http://projecteuclid.org/euclid.aop/1176994994.