Open Access
October, 1986 The Spectral Radius of Large Random Matrices
Stuart Geman
Ann. Probab. 14(4): 1318-1328 (October, 1986). DOI: 10.1214/aop/1176992372

Abstract

Let $\{m_{ij}\}, i = 1,2,\ldots, j = 1,2,\ldots,$ be iid random variables with $Em_{11} = 0$ and $Em^2_{11} = \sigma^2$. For each $n$ define $M_n = \{m_{ij}\}_{1 \leq i, j \leq n}$, the $n \times n$ matrix whose $(i, j)$ component is $m_{ij}$. We show that $\lim \sup_{n \rightarrow \infty}\rho_n \leq \sigma$ a.s., where $\rho_n$ is the spectral radius of $M_n/\sqrt n$. Evidence from computer experiments indicates that in fact $\rho_n \rightarrow \sigma$ a.s.

Citation

Download Citation

Stuart Geman. "The Spectral Radius of Large Random Matrices." Ann. Probab. 14 (4) 1318 - 1328, October, 1986. https://doi.org/10.1214/aop/1176992372

Information

Published: October, 1986
First available in Project Euclid: 19 April 2007

zbMATH: 0605.60037
MathSciNet: MR866352
Digital Object Identifier: 10.1214/aop/1176992372

Subjects:
Primary: 60F15

Keywords: random matrices , spectral radius , stability of random systems

Rights: Copyright © 1986 Institute of Mathematical Statistics

Vol.14 • No. 4 • October, 1986
Back to Top