Open Access
April, 1987 Noncentral Limit Theorems and Appell Polynomials
Florin Avram, Murad S. Taqqu
Ann. Probab. 15(2): 767-775 (April, 1987). DOI: 10.1214/aop/1176992170

Abstract

Let $X_i$ be a stationary moving average with long-range dependence. Suppose $EX_i = 0$ and $EX^{2n}_i < \infty$ for some $n \geq 2$. When the $X_i$ are Gaussian, then the Hermite polynomials play a fundamental role in the study of noncentral limit theorems for functions of $X_i$. When the $X_i$ are not Gaussian, the relevant polynomials are Appell polynomials. They satisfy a multinomial-type expansion that can be used to establish noncentral limit theorems.

Citation

Download Citation

Florin Avram. Murad S. Taqqu. "Noncentral Limit Theorems and Appell Polynomials." Ann. Probab. 15 (2) 767 - 775, April, 1987. https://doi.org/10.1214/aop/1176992170

Information

Published: April, 1987
First available in Project Euclid: 19 April 2007

zbMATH: 0624.60049
MathSciNet: MR885142
Digital Object Identifier: 10.1214/aop/1176992170

Subjects:
Primary: 60F17
Secondary: 33A70

Keywords: Appell polynomials , Hermite processes , long-range dependence , multiple Wiener-Ito integrals , Self-similar processes , weak convergence

Rights: Copyright © 1987 Institute of Mathematical Statistics

Vol.15 • No. 2 • April, 1987
Back to Top