Abstract
Let $\{X_t\}$ be a stationary ergodic process with distribution $P$ admitting densities $p(x_0,\ldots, x_{n-1})$ relative to a reference measure $M$ that is finite order Markov with stationary transition kernel. Let $I_M(P)$ denote the relative entropy rate. Then $n^{-1}\log p(X_0,\ldots, X_{n-1}) \rightarrow I_M(P) \mathrm{a.s.} (P).$ We present an elementary proof of the Shannon-McMillan-Breiman theorem and the preceding generalization, obviating the need to verify integrability conditions and also covering the case $I_M(P) = \infty$. A sandwich argument reduces the proof to direct applications of the ergodic theorem.
Citation
Paul H. Algoet. Thomas M. Cover. "A Sandwich Proof of the Shannon-McMillan-Breiman Theorem." Ann. Probab. 16 (2) 899 - 909, April, 1988. https://doi.org/10.1214/aop/1176991794
Information