Open Access
October, 1988 Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix
Z. D. Bai, Y. Q. Yin
Ann. Probab. 16(4): 1729-1741 (October, 1988). DOI: 10.1214/aop/1176991594

Abstract

Let W=(Xij;1i,j<) be an infinite matrix. Suppose W is symmetric, entries on the diagonal are iid, entries off the diagonal are iid and they are independent. Then it is proved that the necessary and sufficient conditions for λmax((1/n)Wn)aa.s. are (1) E(X11+)2<; (2) EX124<; (3) EX120; (4) a=2σ,σ2=EX122. Here Wn=(Xij;1i,jn).

Citation

Download Citation

Z. D. Bai. Y. Q. Yin. "Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix." Ann. Probab. 16 (4) 1729 - 1741, October, 1988. https://doi.org/10.1214/aop/1176991594

Information

Published: October, 1988
First available in Project Euclid: 19 April 2007

zbMATH: 0677.60038
MathSciNet: MR958213
Digital Object Identifier: 10.1214/aop/1176991594

Subjects:
Primary: 60F99
Secondary: 62E20

Keywords: Largest eigenvalue , Random matrix , semicircle law , Wigner matrix

Rights: Copyright © 1988 Institute of Mathematical Statistics

Vol.16 • No. 4 • October, 1988
Back to Top