Open Access
October, 1988 Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix
Z. D. Bai, Y. Q. Yin
Ann. Probab. 16(4): 1729-1741 (October, 1988). DOI: 10.1214/aop/1176991594

Abstract

Let $W = (X_{ij}; 1 \leq i, j < \infty)$ be an infinite matrix. Suppose $W$ is symmetric, entries on the diagonal are $\operatorname{iid}$, entries off the diagonal are $\operatorname{iid}$ and they are independent. Then it is proved that the necessary and sufficient conditions for $\lambda_{\max}((1/\sqrt{n})W_n) \rightarrow a \mathrm{a.s.}$ are (1) $E(X^+_{11})^2 < \infty$; (2) $EX^4_{12} < \infty$; (3) $EX_{12} \leq 0$; (4) $a = 2\sigma, \sigma^2 = EX^2_{12}$. Here $W_n = (X_{ij}; 1 \leq i, j \leq n)$.

Citation

Download Citation

Z. D. Bai. Y. Q. Yin. "Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix." Ann. Probab. 16 (4) 1729 - 1741, October, 1988. https://doi.org/10.1214/aop/1176991594

Information

Published: October, 1988
First available in Project Euclid: 19 April 2007

zbMATH: 0677.60038
MathSciNet: MR958213
Digital Object Identifier: 10.1214/aop/1176991594

Subjects:
Primary: 60F99
Secondary: 62E20

Keywords: Largest eigenvalue , Random matrix , semicircle law , Wigner matrix

Rights: Copyright © 1988 Institute of Mathematical Statistics

Vol.16 • No. 4 • October, 1988
Back to Top