Open Access
October, 1992 Decoupling and Khintchine's Inequalities for $U$-Statistics
Victor H. de la Pena
Ann. Probab. 20(4): 1877-1892 (October, 1992). DOI: 10.1214/aop/1176989533

Abstract

In this paper we introduce a fairly general decoupling inequality for $U$-statistics. Let $\{X_i\}$ be a sequence of independent random variables in a measurable space $(S, \mathscr{J})$, and let $\{\tilde{X}_i\}$ be an independent copy of $\{X_i\}$. Let $\Phi(x)$ be any convex increasing function for $x \geq 0$. Let $\Pi_{ij}$ be families of functions of two variables taking $(S \times S)$ into a Banach space $(D, \|\cdot\|)$. If the $f_{ij} \in \Pi_{ij}$ are Bochner integrable and $\max_{1\leq i\neq j\leq n} E\Phi\big(\sup_{f_{ij}\in\Pi_{ij}}\|f_{ij}(X_i, X_j)\|\big) < \infty,$ then, under measurability conditions, $E\Phi\big(\sup_{\mathbf{f}\in\mathbf{\Pi}}\big\|\sum_{1\leq i\neq j\leq n} f_{ij}(X_i, X_j)\big\|\big) \leq E\Phi\big(8 \sup_{\mathbf{f}\in\mathbf{\Pi}}\big\|\sum_{1\leq i\neq j\leq n} f_{ij}(X_i, \tilde{X}_j)\big\|\big),$ where $\mathbf{f} = (f_{ij}, 1 \leq i \neq j \leq n)$ and $\mathbf{\Pi} = (\Pi_{ij}, 1 \leq i \neq j \leq n)$. In the case where $\mathbf{\Pi}$ is a family of functions of two variables satisfying $f_{ij} = f_{ji}$ and $f_{ij}(X_i, X_j) = f_{ij}(X_j, X_i)$, the reverse inequality holds (with a different constant). As a corollary, we extend Khintchine's inequality for quadratic forms to the case of degenerate $U$-statistics. A new maximal inequality for degenerate $U$-statistics is also obtained. The multivariate extension is provided.

Citation

Download Citation

Victor H. de la Pena. "Decoupling and Khintchine's Inequalities for $U$-Statistics." Ann. Probab. 20 (4) 1877 - 1892, October, 1992. https://doi.org/10.1214/aop/1176989533

Information

Published: October, 1992
First available in Project Euclid: 19 April 2007

zbMATH: 0761.60014
MathSciNet: MR1188046
Digital Object Identifier: 10.1214/aop/1176989533

Subjects:
Primary: 60E15
Secondary: 10C10

Keywords: $U$-statistics , Decoupling , Khintchine's inequalities

Rights: Copyright © 1992 Institute of Mathematical Statistics

Vol.20 • No. 4 • October, 1992
Back to Top