Open Access
October, 1994 Limit Distribution of Maximal Non-Aligned Two-Sequence Segmental Score
Amir Dembo, Samuel Karlin, Ofer Zeitouni
Ann. Probab. 22(4): 2022-2039 (October, 1994). DOI: 10.1214/aop/1176988493

Abstract

Consider two independent sequences $X_1,\ldots, X_n$ and $Y_1,\ldots, Y_n$. Suppose that $X_1,\ldots, X_n$ are i.i.d. $\mu_X$ and $Y_1,\ldots, Y_n$ are i.i.d. $\mu_Y$, where $\mu_X$ and $\mu_Y$ are distributions on finite alphabets $\sigma_X$ and $\sigma_Y$, respectively. A score $F: \sigma_X \times \sigma_Y\rightarrow \mathbb{R}$ is assigned to each pair $(X_i, Y_j)$ and the maximal nonaligned segment score is $M_n = \max_{0\leq i, j\leq n - \Delta, \Delta \geq 0} \{\sum^\Delta_{k=1} F(X_{i+k}, Y_{j+k})\}$. The limit distribution of $M_n$ is derived here when $\mu_X$ and $\mu_Y$ are not too far apart and $F$ is slightly constrained.

Citation

Download Citation

Amir Dembo. Samuel Karlin. Ofer Zeitouni. "Limit Distribution of Maximal Non-Aligned Two-Sequence Segmental Score." Ann. Probab. 22 (4) 2022 - 2039, October, 1994. https://doi.org/10.1214/aop/1176988493

Information

Published: October, 1994
First available in Project Euclid: 19 April 2007

zbMATH: 0836.60023
MathSciNet: MR1331214
Digital Object Identifier: 10.1214/aop/1176988493

Subjects:
Primary: 60F10
Secondary: 60G70

Keywords: Chen-Stein method , large deviations , large segmental sums , Sequence matching

Rights: Copyright © 1994 Institute of Mathematical Statistics

Vol.22 • No. 4 • October, 1994
Back to Top