Open Access
October, 1994 Lower Estimates of the Convergence Rate for $U$-Statistics
Vidmantas Bentkus, Friedrich Gotze, Ricardas Zitikis
Ann. Probab. 22(4): 1707-1714 (October, 1994). DOI: 10.1214/aop/1176988478

Abstract

Recent results on the Berry-Esseen bound for $U$-statistics assumed the following conditions: Suppose a $U$-statistic (of degree 2) is nondegenerate. Then the rate of convergence in the CLT is of the order $O(n^{-1/2})$ provided that $\mathbb{E}|\mathbb{E}\{h(X_1, X_2)|X_1\}|^3 < \infty, \mathbb{E}|h(X_1, X_2)|^{5/3} < \infty,$ where $h$ is a symmetric kernel corresponding to the $U$-statistic. It follows from our results that these moment conditions are final. In particular, the last moment condition cannot be replaced by a moment of order $5/3 - \epsilon$ for any $\epsilon > 0$. Similar results hold for von Mises statistics.

Citation

Download Citation

Vidmantas Bentkus. Friedrich Gotze. Ricardas Zitikis. "Lower Estimates of the Convergence Rate for $U$-Statistics." Ann. Probab. 22 (4) 1707 - 1714, October, 1994. https://doi.org/10.1214/aop/1176988478

Information

Published: October, 1994
First available in Project Euclid: 19 April 2007

zbMATH: 0839.60023
MathSciNet: MR1331199
Digital Object Identifier: 10.1214/aop/1176988478

Subjects:
Primary: 60F05
Secondary: 62E20

Keywords: $U$-statistics , Berry-Esseen bound , convergence rate , lower bound

Rights: Copyright © 1994 Institute of Mathematical Statistics

Vol.22 • No. 4 • October, 1994
Back to Top