The Annals of Probability

Criticality for branching processes in random environment

V. I. Afanasyev, J. Geiger, G. Kersting, and V. A. Vatutin

Full-text: Open access


We study branching processes in an i.i.d. random environment, where the associated random walk is of the oscillating type. This class of processes generalizes the classical notion of criticality. The main properties of such branching processes are developed under a general assumption, known as Spitzer’s condition in fluctuation theory of random walks, and some additional moment condition. We determine the exact asymptotic behavior of the survival probability and prove conditional functional limit theorems for the generation size process and the associated random walk. The results rely on a stimulating interplay between branching process theory and fluctuation theory of random walks.

Article information

Ann. Probab. Volume 33, Number 2 (2005), 645-673.

First available in Project Euclid: 3 March 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)
Secondary: 60G50: Sums of independent random variables; random walks 60F17: Functional limit theorems; invariance principles

Branching process random environment random walk conditioned random walk Spitzer’s condition Tanaka decomposition functional limit theorem


Afanasyev, V. I.; Geiger, J.; Kersting, G.; Vatutin, V. A. Criticality for branching processes in random environment. Ann. Probab. 33 (2005), no. 2, 645--673. doi:10.1214/009117904000000928.

Export citation


  • Afanasyev, V. I. (1993). A limit theorem for a critical branching process in random environment. Discrete Math. Appl. 5 45--58. (In Russian.)
  • Afanasyev, V. I. (1997). A new theorem for a critical branching process in random environment. Discrete Math. Appl. 7 497--513.
  • Afanasyev, V. I. (2001). A functional limit theorem for a critical branching process in a random environment. Discrete Math. Appl. 11 587--606.
  • Agresti, A. (1975). On the extinction times of varying and random environment branching processes. J. Appl. Probab. 12 39--46.
  • Athreya, K. B. and Karlin, S. (1971). On branching processes with random environments: I, II. Ann. Math. Statist. 42 1499--1520, 1843--1858.
  • Athreya, K. B. and Ney, P. (1972). Branching Processes. Springer, Berlin.
  • Bertoin, J. and Doney, R. A. (1994). On conditioning a random walk to stay nonnegative. Ann. Probab. 22 2152--2167.
  • Bingham, N., Goldie, C. and Teugels, J. (1987). Regular Variation. Cambridge Univ. Press.
  • Doney, R. A. (1985). Conditional limit theorems for asymptotically stable random walks. Z. Wahrsch. Verw. Gebiete 70 351--360.
  • Doney, R. A. (1995). Spitzer's condition and ladder variables in random walks. Probab. Theory Related Fields 101 577--580.
  • Durrett, R. (1978). Conditioned limit theorems for some null recurrent Markov processes. Ann. Probab. 6 798--828.
  • Dyakonova, E. E., Geiger, J. and Vatutin, V. A. (2004). On the survival probability and a functional limit theorem for branching processes in random environment. Markov Process. Related Fields 10 289--306.
  • Feller, W. (1971). An Introduction to Probability Theory and Its Applications II. Wiley, New York.
  • Geiger, J. and Kersting, G. (2000). The survival probability of a critical branching process in a random environment. Theory Probab. Appl. 45 517--525.
  • Jagers, P. (1974). Galton--Watson processes in varying environments. J. Appl. Probab. 11 174--178.
  • Jirina, M. (1976). Extinction of non-homogeneous Galton--Watson processes. J. Appl. Probab. 13 132--137.
  • Kozlov, M. V. (1976). On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment. Theory Probab. Appl. 21 791--804.
  • Kozlov, M. V. (1995). A conditional function limit theorem for a critical branching process in a random medium. Dokl. Akad. Nauk 344 12--15. (In Russian.)
  • Petrov, V. V. (1975). Sums of Independent Random Variables. Springer, Berlin.
  • Smith, W. L. and Wilkinson, W. E. (1969). On branching processes in random environments. Ann. Math. Statist. 40 814--827.
  • Tanaka, H. (1989). Time reversal of random walks in one dimension. Tokyo J. Math. 12 159--174.
  • Vatutin, V. A. (2002). Reduced branching processes in random environment: The critical case. Theory Probab. Appl. 47 99--113.
  • Vatutin, V. A. and Dyakonova, E. E. (2003). Galton--Watson branching processes in random environment, I: Limit theorems. Teor. Veroyatnost. i Primenen. 48 274--300. (In Russian.)