The Annals of Probability

The mean velocity of a Brownian motion in a random Lévy potential

Philippe Carmona

Full-text: Open access

Abstract

A Brownian motion in a random Lévy potential V is the informal solution of the stochastic differential equation

$$dX_t = dB_t - 1/2 V'(X_t)dt,$$

where $B$ is a Brownian motion independent of $V$.

We generalize some results of Kawazu-Tanaka, who considered for $V$ a Brownian motion with drift, by proving that $X_t /t$ converges almost surely to a constant, the mean velocity, which we compute in terms of the Lévy exponent $\phi$ of $V$, defined by $\mathbb{E}[e^{mV(t)}]=e{-t\phi(m)}$.

Article information

Source
Ann. Probab. Volume 25, Number 4 (1997), 1774-1788.

Dates
First available in Project Euclid: 7 June 2002

Permanent link to this document
http://projecteuclid.org/euclid.aop/1023481110

Digital Object Identifier
doi:10.1214/aop/1023481110

Mathematical Reviews number (MathSciNet)
MR1487435

Zentralblatt MATH identifier
0903.60065

Subjects
Primary: 60J60: Diffusion processes [See also 58J65]
Secondary: 60J30 60J15 60J65

Keywords
Diffusion process random walk random media

Citation

Carmona, Philippe. The mean velocity of a Brownian motion in a random Lévy potential. Ann. Probab. 25 (1997), no. 4, 1774--1788. doi:10.1214/aop/1023481110. http://projecteuclid.org/euclid.aop/1023481110.


Export citation

References

  • 1 BARLOW, M. T., PITMAN, J. W. and YOR, M. 1989. Une extension multidimensionnelle de la loi de l'arcsinus. Seminaire de Probabilites XXIII. Lecture Notes in Math. 1372 ´ ´ 294 314. Springer, Berlin.
  • 2 BROX, T. 1986. A one-dimensional diffusion process in a Wiener medium. Ann. Probab. 14 1206 1218.
  • 3 CARMONA, P., PETIT, F. and YOR, M. 1996. On the distribution and asymptotic results for exponential functionals of Levy processes. Exponential Functionals and Principal ´ Values Related to Brownian Motion, Bibl. Rev. Mat. Iberoamericana, Madrid.
  • 4 HARRISON, J. M. and SHEPP, L. A. 1981. On skew Brownian motion. Ann. Probab. 9 309 313.
  • 5 JACOD, J. and SHIRYAEV, A. N. 1987. Limit Theorems for Stochastic Processes. Springer, New York.
  • 6 KAWAZU, K., TAMURA, Y. and TANAKA, H. 1992. Localization of diffusion processes in one-dimensional random environment. J. Math. Soc. Japan 44 515 550.
  • 7 KAWAZU, K. and TANAKA, H. 1991. On the maximum of diffusion process in a drifted Brownian environment. Seminaire de Probabilites XXVII. Lecture Notes in Math. ´ ´ 1557 78 85. Springer, Berlin.
  • 8 KAWAZU, K. and TANAKA, H. 1995. A diffusion process in a Brownian environment with drift. Unpublished manuscript.
  • 9 KESTEN, H., KOZLOV, M. V. and SPITZER, F. 1975. A limit law for random walk in a random environment. Compositio Math. 30 145 168.
  • 10 KOZLOV, M. V. 1973. A random walk on the line with stochastic structure. Theory Probab. Appl. 18 406 408.
  • 11 MATHIEU, P. 1994. Zero white noise limit through Dirichlet forms, with application to diffusions in a random medium. Probab. Theory Related Fields 99 549 580.
  • 12 MATHIEU, P. 1995. Limit theorems for diffusions with a random potential. Stochastic Process. Appl. 60 103 111.
  • 13 MATHIEU, P. 1996. On random perturbations of dynamical systems and diffusions with a Brownian potential in dimension one. Preprint.
  • 14 REVUZ, D. and YOR, M. 1991. Continuous Martingales and Brownian Motion. Springer, New York.
  • 15 REVUZ, D. and YOR, M. 1994. Continuous Martingales and Brownian Motion, 2nd ed. Springer, New York.
  • 16 SOLOMON, F. 1975. Random walks in a random environment. Ann. Probab. 3 1 31.
  • 17 WALSH, J. B. 1978. A diffusion with a discontinuous local time. Asterisque 52-53 37 45. ´