Open Access
October 1999 The Limit Behavior of Elementary Symmetric Polynomials of i.i.d. Random Variables When Their Order Tends to Infinity
Péter Major
Ann. Probab. 27(4): 1980-2010 (October 1999). DOI: 10.1214/aop/1022874824
Abstract

Let $\xi_1,\xi_2\ldots$ be a sequence of i.i.d.random variables, and consider the elementary symmetric polynomial $S ^(k)(n)$ of order $k =k(n)$ of the first $n$ elements $\xi_1\ldots,\xi_n$ of this sequence. We are interested in the limit behavior of $S^(k) (n)$ with an appropriate transformation if $k(n)/n\rightarrow\alpha, 0<\alpha<1$. Since $k(n)\rightarrow\infty$ as $n\rightarrow\infty$, the classical methods cannot be applied in this case and new kinds of results appear.We solve the problem under some conditions which are satisfied in the generic case. The proof is based on the saddlepoint method and a limit theorem for sums of independent random vectors which mayhave some special interest in itself.

References

1.

[1] Dynkin, E. B. and Mandelbaum, A. (1983). Symmetric statistics, Poisson processes and multiple Wiener integrals. Ann.Statist.11 739-745.  MR85b:60015 0518.60050 10.1214/aos/1176346241 euclid.aos/1176346241 [1] Dynkin, E. B. and Mandelbaum, A. (1983). Symmetric statistics, Poisson processes and multiple Wiener integrals. Ann.Statist.11 739-745.  MR85b:60015 0518.60050 10.1214/aos/1176346241 euclid.aos/1176346241

2.

[2] Hal´asz, G. and Sz´ekely, G. J. (1976). On the elementary symmetric polynomials of independent random variables. Acta Math.Acad.Sci.Hungar.28 397-400.  MR54:11467 0349.60053 10.1007/BF01896806[2] Hal´asz, G. and Sz´ekely, G. J. (1976). On the elementary symmetric polynomials of independent random variables. Acta Math.Acad.Sci.Hungar.28 397-400.  MR54:11467 0349.60053 10.1007/BF01896806

3.

[3] M ´ori, T. F. and Sz´ekely, G. J. (1982). Asymptotical behavior of symmetric polynomial statistics. Ann.Probab.10 124-131.  MR637380 10.1214/aop/1176993917 euclid.aop/1176993917 [3] M ´ori, T. F. and Sz´ekely, G. J. (1982). Asymptotical behavior of symmetric polynomial statistics. Ann.Probab.10 124-131.  MR637380 10.1214/aop/1176993917 euclid.aop/1176993917

4.

[4] Parthasarathy, K. R. (1967). Probability Measures on Metric Spaces. Academic Press, New York.  MR37:2271 0153.19101[4] Parthasarathy, K. R. (1967). Probability Measures on Metric Spaces. Academic Press, New York.  MR37:2271 0153.19101

5.

[5] Raugi, A. (1979). Th´eor eme de la limite centrale pour un produit semi-direct d'un groupe de Lie r´esoluble simplement connexe de type rigide par un groupe compact. Probability Measures on Groups. Lecture Notes in Math. 706 257-324. Springer, Berlin. [5] Raugi, A. (1979). Th´eor eme de la limite centrale pour un produit semi-direct d'un groupe de Lie r´esoluble simplement connexe de type rigide par un groupe compact. Probability Measures on Groups. Lecture Notes in Math. 706 257-324. Springer, Berlin.

6.

[6] van Ess, G. (1986). On the weak limit of elementary symmetric polynomials. Ann.Probab. 14 667-695. MR832030 0601.60026 10.1214/aop/1176992537 euclid.aop/1176992537 [6] van Ess, G. (1986). On the weak limit of elementary symmetric polynomials. Ann.Probab. 14 667-695. MR832030 0601.60026 10.1214/aop/1176992537 euclid.aop/1176992537
Copyright © 1999 Institute of Mathematical Statistics
Péter Major "The Limit Behavior of Elementary Symmetric Polynomials of i.i.d. Random Variables When Their Order Tends to Infinity," The Annals of Probability 27(4), 1980-2010, (October 1999). https://doi.org/10.1214/aop/1022874824
Published: October 1999
Vol.27 • No. 4 • October 1999
Back to Top