The Annals of Probability

Backward stochastic differential equations with constraints on the gains-process

Jak{\v{s}}a Cvitani{\'c}, Ioannis Karatzas, and H. Mete Soner

Full-text: Open access


We consider backward stochastic differential equations with convex constraints on the gains (or intensity-of-noise) process. Existence and uniqueness of a minimal solution are established in the case of a drift coefficient which is Lipschitz continuous in the state and gains processes and convex in the gains process. It is also shown that the minimal solution can be characterized as the unique solution of a functional stochastic control-type equation. This representation is related to the penalization method for constructing solutions of stochastic differential equations, involves change of measure techniques, and employs notions and results from convex analysis, such as the support function of the convex set of constraints and its various properties.

Article information

Ann. Probab. Volume 26, Number 4 (1998), 1522-1551.

First available in Project Euclid: 31 May 2002

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Digital Object Identifier

Zentralblatt MATH identifier

Primary: 60H10: Stochastic ordinary differential equations [See also 34F05] 93E20: Optimal stochastic control
Secondary: 60G40: Stopping times; optimal stopping problems; gambling theory [See also 62L15, 91A60]

Backward SDEs convex constraints stochastic control


Cvitani{\'c}, Jak{\v{s}}a; Karatzas, Ioannis; Soner, H. Mete. Backward stochastic differential equations with constraints on the gains-process. Ann. Probab. 26 (1998), no. 4, 1522--1551. doi:10.1214/aop/1022855872.

Export citation


  • Arkin, V. and Saxonov, M. (1979). Necessary optimality conditions for stochastic diferrential equations. Soviet Math. Doklady 20 1-15.
  • Barles, G., Buckdahn, R. and Pardoux, E. (1997). Backward stochastic differential equations and integral-partial differential equations. Stochastics Stochastics Rep. 60 57-83.
  • Bensoussan, A. (1981). Lectures on stochastic control. Lecture Notes in Math. 972 1-62. Springer, Berlin.
  • Bismut, J. M. (1978). An introductory approach to duality in optimal stochastic control. SIAM Rev. 20 62-78.
  • Broadie, M., Cvitani´c, J. and Soner, H. M. (1998). Optimal replication of contingent claims under portfolio constraints. Rev. Financial Studies 11 59-79.
  • Buckdahn, R. and Hu, Y. (1996). Hedging contingent claims for a large investor in an incomplete market. Preprint.
  • Buckdahn, R. and Hu, Y. (1997). Pricing of American contingent claims with jump stock price and constrained portfolios. Preprint.
  • Cvitani´c, J. and Karatzas, I. (1992). Convex duality for constrained porfolio optimization. Ann. Appl. Probab. 2 767-818.
  • Cvitani´c, J. and Karatzas, I. (1993). Hedging contingent claims with constrained portfolios. Ann. Appl. Probab. 3 652-681.
  • Cvitani´c, J. and Karatzas, I. (1996). Backward stochastic differential equations with reflection and Dynkin games. Ann. Probab. 24 2024-2056.
  • Darling, R. W. R. and Pardoux, E. (1997). Backward SDE with random terminal time and applications to semilinear elliptic PDE. Ann. Probab. 25 1135-1159.
  • Duffie, D. and Epstein, L. (1992). Stochastic differential utility. Econometrica 60 353-394.
  • Elliott, R. J. (1990). The optimal control of diffusions. Appl. Math. Optim. 22 229-240.
  • El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S. and Quenez, M. C. (1997). Reflected solutions of backward SDE's, and related obstacle problems for PDE's. Ann. Probab. 25 702-737.
  • El Karoui, N., Peng, S. and Quenez, M. C. (1997). Backward stochastic differential equations in finance. Math. Finance 7 1-71.
  • El Karoui, N. and Quenez, M. C. (1995). Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J. Control Optim. 33 29-66. Hamad ene, S. and Lepeltier, J. M. (1995a). Backward equations, stochastic control, and zerosum stochastic differential games. Stochastics Stochastics Rep. 54 221-231. Hamad ene, S. and Lepeltier, J. M. (1995b). Zero-sum stochastic differential games and backward equations. Systems Control Lett. 24 259-263.
  • Haussmann, U. G. (1986). A Stochastic Maximum Principle for Optimal Control of Diffusions. Longman, Essex, U.K.
  • It o, K. (1942). Differential equations determining Markov processes. Zenkoku Shij¯o S ¯ugaku Danwakai 1077 1352-1400 (in Japanese).
  • It o, K. (1946). On a stochastic integral equation. Proc. Imperial Acad. Tokyo 22 32-35.
  • It o, K. (1951). On stochastic differential equations. Mem. Amer. Math. Soc. 4 1-51.
  • Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Springer, New York.
  • Karatzas, I. and Shreve, S. E. (1998). Methods of Mathematical Finance. Springer, New York. To appear.
  • Ma, J. and Cvitani´c, J. (1997). Reflected Forward-Backward SDEs and obstacle problems with boundary conditions. Preprint.
  • Neveu, J. (1975). Discrete-Parameter Martingales. North-Holland, Amsterdam.
  • Pardoux, E. and Peng, S. (1990). Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 55-61.
  • Pardoux, E. and Peng, S. (1994). Backward doubly stochastic differential equations and systems of quasilinear SPDEs. Probab. Theory Related Fields 98 209-227.
  • Pardoux, E. and Tang, S. (1996). The study of forward-backward stochastic differential equation and its application in quasilinear PDEs. Preprint.
  • Peng, S. (1990). A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28 966-979.
  • Peng, S. (1991). Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stochastics Stochastics Rep. 37 61-74.
  • Peng, S. (1993). Backwards stochastic differential equations and applications to optimal control. Appl. Math. Optim. 27 125-144.
  • Rockafellar, R. T. (1970). Convex Analysis. Princeton Univ. Press.
  • Saksonov, M. (1989). The Variational Principles in Stochastic Control. Dushanbe State Educational Institute, Preprint.