The Annals of Probability

A spatial model for the abundance of species

Maury Bramson, J. Theodore Cox, and Richard Durrett

Full-text: Open access

Abstract

The voter model, with mutations occurring at a positive rate $\alpha$, has a unique equilibrium distribution. We investigate the logarithms of the relative abundance of species for these distributions in $d \geq 2$. We show that, as $\alpha \to \infty$, the limiting distribution is right triangular in $d = 2$ and uniform in $d \geq 3$. We also obtain more detailed results for the histograms that biologists use to estimate the underlying density functions.

Article information

Source
Ann. Probab. Volume 26, Number 2 (1998), 658-709.

Dates
First available in Project Euclid: 31 May 2002

Permanent link to this document
http://projecteuclid.org/euclid.aop/1022855647

Digital Object Identifier
doi:10.1214/aop/1022855647

Mathematical Reviews number (MathSciNet)
MR1626495

Zentralblatt MATH identifier
0935.60100

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 92D25: Population dynamics (general)

Keywords
Species abundance distributions multitype voter model coalescing random walk

Citation

Bramson, Maury; Cox, J. Theodore; Durrett, Richard. A spatial model for the abundance of species. Ann. Probab. 26 (1998), no. 2, 658--709. doi:10.1214/aop/1022855647. http://projecteuclid.org/euclid.aop/1022855647.


Export citation

References

  • Arratia, R. (1981). Limiting point processes for rescaling of coalescing and annihilating random walks on Zd. Ann. Probab. 9 909-936.
  • Arratia, R., Barbour, A. D. and Tavar´e, S. (1992). Poisson process approximations for the Ewens sampling formula. Ann. Appl. Probab. 2 519-535.
  • Batzli, G. O. (1969). Distribution of biomass in rocky intertidal communities on the Pacific Coast of the United States. J. Anim. Ecol. 38 531-546.
  • Bramson, M., Cox, J. T. and Durrett, R. (1996). Spatial models for species area curves. Ann. Probab. 24 1727-1751.
  • Bramson, M., Cox, J. T. and Durrett, R. (1997). A spatially explicit model for the abundance of species. Preprint.
  • Bramson, M. and Griffeath, D. (1980). Asymptotics for some interacting particle systems on Zd.Wahrsch. Verw. Gebiete 53 183-196.
  • Brian, M. V. (1953). Species frequencies in random samples of animal populations. J. Anim. Ecology 22 57-64.
  • Clifford, P. and Sudbury, A. (1973). A model for spatial conflict. Biometrica 60 581-588.
  • Donnelly, P., Kurtz, T. G. and Tavar´e, S. (1991). On the functional central limit theorem for the Ewens sampling formula. Ann. Appl. Probab. 1 539-545.
  • Durrett, R. (1998). Lecture Notes on Particle Systems and Percolation. Wadsworth, Belmont, CA.
  • Engen, S. (1978). Stochastic Abundance Models. Chapman and Hall, London.
  • Engen, S. and Lande, R. (1996). Population dynamic models generating the lognormal species abundance distribution. Math. Biosci. 132 169-183.
  • Fisher, R. A., Corbet, A. S. and Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample from an animal population. J. Anim. Ecology. 12 42-58.
  • Griffeath, D. (1979). Additive and Cancellative Interacting Particle Systems. Lecture Notes in Math. 724. Springer, Berlin.
  • Hansen, J. C. (1990). A functional central limit theorem for the Ewens sampling formula. J. Appl. Probab. 27 28-43.
  • Holley, R. A. and Liggett, T. M. (1975). Ergodic theorems for weakly interacting systems and the voter model. Ann. Probab. 3 643-663.
  • Hubbell, S. P. (1995). Towards a theory of biodiversity and biogeography on continuous landscapes. In Preparing for Global Change: A Midwestern Perspective (G. R. Carmichael, G. E. Folk and J. L. Schnoor, eds.) 173-201. SPB, Amsterdam.
  • Kelly, F. P. (1979). Reversibility and Stochastic Networks. Wiley, New York.
  • Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York.
  • Longuet-Higgins, M. S. (1971). On the Shannon-Weaver index of diversity, in relation to the distribution of species in bird censuses. Theoret. Population Biol. 2 271-289.
  • MacArthur, R. H. (1957). On the relative abundance of bird species. Proc. Nat. Acad. Sci. U.S.A. 43 293-295.
  • MacArthur, R. H. (1960). On the relative abundance of species. Amer. Natur. 94 25-36.
  • May, R. M. (1975). Patterns of species abundance and diversity. In Ecology and Evolution of Communities (M. L. Coday and J. M. Diamond, eds.) 81-120. Belknap Press, Cambridge.
  • Preston, F. W. (1948). The commonness, and rarity, of species. Ecology 29 254-283.
  • Preston, F. W. (1962). The canonical distribution of commonness and rarity. Ecology 43 254-283.
  • Sawyer, S. (1979). A limit theorem for patch sizes in a selectively-neutral migration model. J. Appl. Probab. 16 482-495.
  • Tramer, E. J. (1969). Bird species diversity; components of Shannon's formula. Ecology 50 927-929.
  • Webb, D. J. (1974). The statistics of relative abundance and diversity. J. Theoret. Biol. 43 277-292.
  • Whittaker, R. H. (1965). Dominance and diversity in land plant communities. Science 147 250-260.
  • Whittaker, R. H. (1970). Communities and Ecosystems. MacMillan, New York.
  • Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon 21 213-251.
  • Williams, C. B. (1953). The relative abundance of different species in a wild animal population. J. Anim. Ecol. 22 14-31.
  • Williams, C. B. (1964). Patterns in the Balance of Nature. Academic Press, London.