Open Access
January 1998 On the Gaussian measure of the intersection
G. Schechtman, Th. Schlumprecht, J. Zinn
Ann. Probab. 26(1): 346-357 (January 1998). DOI: 10.1214/aop/1022855422
Abstract

The Gaussian correlation conjecture states that for any two symmetric, convex sets in $n$-dimensional space and for any centered, Gaussian measure on that space, the measure of the intersection is greater than or equal to the product of the measures. In this paper we obtain several results which substantiate this conjecture. For example, in the standard Gaussian case, we show there is a positive constant, $c$ , such that the conjecture is true if the two sets are in the Euclidean ball of radius $c \sqrt{n}$. Further we show that if for every $n$ the conjecture is true when the sets are in the Euclidean ball of radius $\sqrt{n}$, then it is true in general. Our most concrete result is that the conjecture is true if the two sets are (arbitrary) centered ellipsoids.

References

1.

[1] Ahlswede, R. and Daykin, D. E. (1978). An inequality for weight of two families of sets, their unions and intersections.Wahrsch. Verw. Gebiete 43 183-185.  MR58:10454[1] Ahlswede, R. and Daykin, D. E. (1978). An inequality for weight of two families of sets, their unions and intersections.Wahrsch. Verw. Gebiete 43 183-185.  MR58:10454

2.

[2] Anderson, T. W. (1955). The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc. 6 170-176.  0066.37402 MR69229 10.2307/2032333[2] Anderson, T. W. (1955). The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc. 6 170-176.  0066.37402 MR69229 10.2307/2032333

3.

[3] Borell, C. (1981). A Gaussian correlation inequality for certain bodies in Rn. Math. Ann. 256 569-573.  MR83a:60033 0451.60018 10.1007/BF01450550[3] Borell, C. (1981). A Gaussian correlation inequality for certain bodies in Rn. Math. Ann. 256 569-573.  MR83a:60033 0451.60018 10.1007/BF01450550

4.

[4] Brascamp, H. J. and Lieb, E. H. (1976). On the extensions of the Brunn-Minkowski and Pr´ekopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22 366-389.  MR56:8774 10.1016/0022-1236(76)90004-5[4] Brascamp, H. J. and Lieb, E. H. (1976). On the extensions of the Brunn-Minkowski and Pr´ekopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22 366-389.  MR56:8774 10.1016/0022-1236(76)90004-5

5.

[5] Das Gupta, S., Eaton, M. L., Olkin, I., Perlman, M., Savage, L. J. and Sobel, M. (1972). Inequalities on the probability content of convex regions for elliptically contoured distributions. Proc. Sixth Berkeley Symp. Math. Statist. Probab. 3 241-264. Univ. California Press, Berkeley.  MR413364[5] Das Gupta, S., Eaton, M. L., Olkin, I., Perlman, M., Savage, L. J. and Sobel, M. (1972). Inequalities on the probability content of convex regions for elliptically contoured distributions. Proc. Sixth Berkeley Symp. Math. Statist. Probab. 3 241-264. Univ. California Press, Berkeley.  MR413364

6.

[6] Dunn, O. J. (1958). Estimation of the means of dependent variables. Ann. Math. Statist. 29 1095-1111.  MR21:399 0092.36702 10.1214/aoms/1177706443 euclid.aoms/1177706443 [6] Dunn, O. J. (1958). Estimation of the means of dependent variables. Ann. Math. Statist. 29 1095-1111.  MR21:399 0092.36702 10.1214/aoms/1177706443 euclid.aoms/1177706443

7.

[7] Dunnett, C. W. and Sobel, M. (1955). Approximations to the probability integral and certain percentage points to a multivariate analogue of Student's t-distribution. Biometrika 42 258-260.  MR16,840l 0064.38501 0006-3444%28195506%2942%3A1%2F2%3C258%3AATTPIA%3E2.0.CO%3B2-Z[7] Dunnett, C. W. and Sobel, M. (1955). Approximations to the probability integral and certain percentage points to a multivariate analogue of Student's t-distribution. Biometrika 42 258-260.  MR16,840l 0064.38501 0006-3444%28195506%2942%3A1%2F2%3C258%3AATTPIA%3E2.0.CO%3B2-Z

8.

[8] Gluskin, E. D. (1989). Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces. Math. USSR Sbornik 64 85-96.  MR89j:46016 0668.52002[8] Gluskin, E. D. (1989). Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces. Math. USSR Sbornik 64 85-96.  MR89j:46016 0668.52002

9.

[9] Karlin, S. and Rinott, Y. (1980). Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions. J. Multivariate Anal. 10 467- 498.  0469.60006 MR599685 10.1016/0047-259X(80)90065-2[9] Karlin, S. and Rinott, Y. (1980). Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions. J. Multivariate Anal. 10 467- 498.  0469.60006 MR599685 10.1016/0047-259X(80)90065-2

10.

[10] Khatri, C. G. (1967). On certain inequalities for normal distributions and their applications to simultaneous confidence bounds. Ann. Math. Statist. 38 1853-1867.  MR36:3452 0155.27103 10.1214/aoms/1177698618 euclid.aoms/1177698618 [10] Khatri, C. G. (1967). On certain inequalities for normal distributions and their applications to simultaneous confidence bounds. Ann. Math. Statist. 38 1853-1867.  MR36:3452 0155.27103 10.1214/aoms/1177698618 euclid.aoms/1177698618

11.

[11] Leindler, L. (1972). On a certain converse of H¨older's inequality II. Acta. Sci. Math. Szeged 33 217-223. [11] Leindler, L. (1972). On a certain converse of H¨older's inequality II. Acta. Sci. Math. Szeged 33 217-223.

12.

[12] Pitt, L. D. (1977). A Gaussian correlation inequality for symmetric convex sets. Ann. Probab. 5 470-474. MR56:7010 10.1214/aop/1176995808[12] Pitt, L. D. (1977). A Gaussian correlation inequality for symmetric convex sets. Ann. Probab. 5 470-474. MR56:7010 10.1214/aop/1176995808

13.

[13] Pr´ekopa, A. (1973). On logarithmic concave measures and functions. Acta Sci. Math. Szeged 34 335-343.  MR53:8357[13] Pr´ekopa, A. (1973). On logarithmic concave measures and functions. Acta Sci. Math. Szeged 34 335-343.  MR53:8357

14.

[14] Sid´ak,(1967). Rectangular confidence regions for the means of multivariate normal distributions. J. Amer. Statist. Assoc. 62 626-633.  MR35:7495 0158.17705 10.2307/2283989[14] Sid´ak,(1967). Rectangular confidence regions for the means of multivariate normal distributions. J. Amer. Statist. Assoc. 62 626-633.  MR35:7495 0158.17705 10.2307/2283989

15.

[15] Sid´ak,(1968). On multivariate normal probabilities of rectangles: their dependence on correlations. Ann. Math. Statist. 39 1425-1434. MR37:5965 0169.50102 euclid.aoms/1177698122 [15] Sid´ak,(1968). On multivariate normal probabilities of rectangles: their dependence on correlations. Ann. Math. Statist. 39 1425-1434. MR37:5965 0169.50102 euclid.aoms/1177698122
Copyright © 1998 Institute of Mathematical Statistics
G. Schechtman, Th. Schlumprecht, and J. Zinn "On the Gaussian measure of the intersection," The Annals of Probability 26(1), 346-357, (January 1998). https://doi.org/10.1214/aop/1022855422
Published: January 1998
Vol.26 • No. 1 • January 1998
Back to Top