The Annals of Probability

The Behavior of the Specific Entropy in the Hydrodynamic Scaling Limit

Elena Kosygina

Full-text: Open access

Abstract

The paper studies the behavior of the specific entropy for one-dimensional simple exclusion processes under the hydrodynamic scaling of time and space. It is shown that if the initial configurations possess a macroscopic profile then for each positive macroscopic time the specific microscopic entropy converges to the macroscopic entropy .The latter is defined in terms of the solution of the corresponding hydrodynamic equation.

Article information

Source
Ann. Probab. Volume 29, Number 3 (2001), 1086-1110.

Dates
First available: 5 March 2002

Permanent link to this document
http://projecteuclid.org/euclid.aop/1015345597

Digital Object Identifier
doi:10.1214/aop/1015345597

Mathematical Reviews number (MathSciNet)
MR1872737

Zentralblatt MATH identifier
1018.60096

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 82C22: Interacting particle systems [See also 60K35]

Keywords
Entropy simple exclusion process hydrodynamic scaling limit hydrodynamic equation

Citation

Kosygina, Elena. The Behavior of the Specific Entropy in the Hydrodynamic Scaling Limit. The Annals of Probability 29 (2001), no. 3, 1086--1110. doi:10.1214/aop/1015345597. http://projecteuclid.org/euclid.aop/1015345597.


Export citation

References

  • DiBenedetto, E. (1995). Partial differential Equations. Birkh¨auser, Boston.
  • Ellis, R. S. (1995). Entropy, Large Deviations, and Statistical Mechanics. Springer, New York.
  • Jensen, L. and Yau, H. T. (1999). Hydrodynamical scaling limits of simple exclusion models. In Probability Theory and Applications 167-225. Amer. Math. Soc., Providence, RI.
  • Kipnis, C. and Landim, C. (1999). Scaling Limits of Interacting Particle Systems. Springer, Berlin.
  • Lee, T.-Y. and Yau, H.-T. (1998). Logarithmic Sobolev inequalityfor some models of random walks. Ann. Probab. 26 1855-1873.
  • Rezakhanlou, F. (1991). Hydrodynamic limit for attractive particle systems on d. Comm. Math. Phys. 140 417-448.
  • Sepp¨al¨ainen, T (1999). Existence of hydrodynamic for the totally asymmetric simple K-exclusion process. Ann. Probab. 27 361-415.
  • Spohin, H. (1991). Large Scale Dynamic of Interacting Particles. Springer, New York.
  • Varadhan, S. R. S. (1993). Entropy methods in hydrodynamic scaling. NonequilibriumProblems in Many-Particle Systems. Lecture Notes in Math. 1551 112-145. Springer, Berlin.
  • Venkatasubramani, R. (1995). Hydrodynamic limit for the asymmetric exclusion process with deterministic initial data and the Hammersleyprocess on S(1). Ph.D. dissertation, New York Univ. Graduate School of Arts and Science.
  • Yau, H.-T. (1997). Logarithmic Sobolev inequalityfor generalized simple exclusion process. Probab. Theory Related Fields 109 507-538.