The Annals of Probability

Stochastic Calculus with Respect to Gaussian Processes

Elisa ,1 2 and Alòs,Olivier Mazet, and David Nualart

Full-text: Open access

Abstract

In this paper we develop a stochastic calculus with respect to a Gaussian process of the form $B_t = \int^t_0 K(t, s)\, dW_s$, where $W$ is a Wiener process and $K(t, s)$ is a square integrable kernel, using the techniques of the stochastic calculus of variations. We deduce change-of-variable formulas for the indefinite integrals and we study the approximation by Riemann sums.The particular case of the fractional Brownian motion is discussed.

Article information

Source
Ann. Probab. Volume 29, Number 2 (2001), 766-801.

Dates
First available: 21 December 2001

Permanent link to this document
http://projecteuclid.org/euclid.aop/1008956692

Digital Object Identifier
doi:10.1214/aop/1008956692

Mathematical Reviews number (MathSciNet)
MR1849177

Zentralblatt MATH identifier
1015.60047

Subjects
Primary: 60N05 60H07: Stochastic calculus of variations and the Malliavin calculus

Keywords
Stochastic integral Malliavin calculus Ito's formula fractional Brownian motion

Citation

Alòs, Elisa ,1 2; and Mazet, Olivier; Nualart, David. Stochastic Calculus with Respect to Gaussian Processes. The Annals of Probability 29 (2001), no. 2, 766--801. doi:10.1214/aop/1008956692. http://projecteuclid.org/euclid.aop/1008956692.


Export citation

References

  • [1] Al os, E. and Nualart, D. (1998). An extension of It o's formula for anticipating processes. J. Theoret. Probab. 11 493-514.
  • [2] Al os, E., Mazet, O. and Nualart, D. (2000). Stochastic calculus with respect to fractional Brownian motion with Hurst parameter less than 12. Stochastic Process. Appl. 86 121-139.
  • [3] Carmona, P. and Coutin, L. (1998). Stochastic integration with respect to fractional Brownian motion. Preprint.
  • [4] Comte, F. and Renault, E. (1996). Long memory continuous time models. J. Econometrics 73 101-149.
  • [5] Dai, W. and Heyde, C. C. (1996). It o's formula with respect to fractional Brownian motion and its application. J. Appl. Math. Stochastic Anal. 9 439-448.
  • [6] Decreusefond, L. and ¨Ust ¨unel, A. S. (1998). Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 177-214.
  • [7] Decreusefond, L. and ¨Ust ¨unel, A. S. (1998). Fractional Brownian motion: theory and applications. ESAIM: Proceedings 5 75-86.
  • [8] Duncan, T. E., Hu, Y. and Pasik-Duncan, B. (1998). Stochastic calculus for fractional Brownian motion. I. Theory. Preprint.
  • [9] Feyel, D. and de la Pradelle, A. (1996). Fractional integrals and Brownian processes. Potential Anal. 10 273-288.
  • [10] Gaveau, B. and Trauber, P. (1982). L'int´egrale stochastic comme op´erateur de divergence dans l'espace fonctionnel. J. Funct. Anal. 46 230-238.
  • [11] Hu, Y. and Øksendal, B. (1999). Fractional white noise calculus and applications to finance. Preprint.
  • [12] Kleptsyna, M. L., Kloeden, P. E. and Anh, V. V. (1998). Existence and uniqueness theorems for stochastic differential equations with fractal Brownian motion. Problemy Peredachi Informatsii 34 54-56.
  • [13] Lin, S. J. (1995). Stochastic analysis of fractional Brownian motions. Stochastics Stochastics Rep. 55 121-140.
  • [14] Malliavin, P. (1997). Stochastic Analysis. Springer, New York.
  • [15] Mandelbrot, B. B. and Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 422-437.
  • [16] Norros, I., Valkeila, E. and Virtamo, J. (1999). An elementary approach to a Girsano formula and other analytical results on fractional Brownian motion. Bernoulli 5 571-587.
  • [17] Nualart, D. (1995). The Malliavin Calculus and Related Topics. Probab. Appl. 21.
  • [18] Nualart, D. (1998). Analysis on Wiener space and anticipating stochastic calculus. Lecture Notes in Math. 1690 123-227. Springer, New York.
  • [19] Nualart, D. and Pardoux, E. (1988). Stochastic calculus with anticipating integrands. Probab. Theory Related Fields 78 535-581.
  • [20] Samko, S. G., Kilbas, A. A. and Marichev, O. I. (1993). Fractional Integrals and Derivatives. Gordon and Breach, New York.
  • [21] Skorohod, A. V. (1975). On a generalization of a stochastic integral. Theory Probab. Appl. 20 219-233.
  • [22] Z¨ahle, M. (1998). Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields 111 333-374.
  • [23] Z¨ahle, M. (1999). Integration with respect to fractal functions and stochastic calculus. II. Preprint.