The Annals of Mathematical Statistics

Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes

T. W. Anderson and D. A. Darling

Full-text: Open access

Abstract

The statistical problem treated is that of testing the hypothesis that $n$ independent, identically distributed random variables have a specified continuous distribution function $F(x)$. If $F_n(x)$ is the empirical cumulative distribution function and $\psi(t)$ is some nonnegative weight function $(0 \leqq t \leqq 1)$, we consider $n^{\frac{1}{2}} \sup_{-\infty<x<\infty} \{| F(x) - F_n(x) | \psi^\frac{1}{2}\lbrack F(x) \rbrack\}$ and $n\int^\infty_{-\infty}\lbrack F(x) - F_n(x) \rbrack^2 \psi\lbrack F(x)\rbrack dF(x).$ A general method for calculating the limiting distributions of these criteria is developed by reducing them to corresponding problems in stochastic processes, which in turn lead to more or less classical eigenvalue and boundary value problems for special classes of differential equations. For certain weight functions including $\psi = 1$ and $\psi = 1/\lbrack t(1 - t) \rbrack$ we give explicit limiting distributions. A table of the asymptotic distribution of the von Mises $\omega^2$ criterion is given.

Article information

Source
Ann. Math. Statist. Volume 23, Number 2 (1952), 193-212.

Dates
First available: 28 April 2007

Permanent link to this document
http://projecteuclid.org/euclid.aoms/1177729437

JSTOR
links.jstor.org

Digital Object Identifier
doi:10.1214/aoms/1177729437

Mathematical Reviews number (MathSciNet)
MR50238

Zentralblatt MATH identifier
0048.11301

Citation

Anderson, T. W.; Darling, D. A. Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes. The Annals of Mathematical Statistics 23 (1952), no. 2, 193--212. doi:10.1214/aoms/1177729437. http://projecteuclid.org/euclid.aoms/1177729437.


Export citation