Open Access
December, 1956 On the Probability of Large Deviations for Sums of Bounded Chance Variables
Harry Weingarten
Ann. Math. Statist. 27(4): 1170-1174 (December, 1956). DOI: 10.1214/aoms/1177728086

Abstract

The following theorems are proved. THEOREM 1. If $x_1, x_2, \cdots$ satisfy $-1 \leqq x_n \leqq a, a \leqq 1$ and $E(x_n \mid x_1, \cdots, x_{n-1}) \leqq - u \max (| x_n | \mid x_1, \cdots, x_{n-1}), 0 < u < 1$, then for any positive $t$ $$\mathrm{Pr}\{x_1 + \cdots + x_n \geqq t \text{for some} n\} \leqq \theta^t,$$ where $\theta$ is the positive root (other than $\theta = 1$) of \begin{equation*}\tag{1} \frac{a + u}{a + 1} \theta^{a+1} - \theta^a + \frac{1 - u}{a + 1} = 0.\end{equation*} This choice of $\theta$ is the best possible. THEOREM 2. If $x_1, x_2, \cdots$ satisfy $| x_n | \leqq 1$ and $E(x_n \mid x_1, \cdots, x_{n - 1}) = 0,$ then for all $N > 0,$ $$\mathrm{Pr}\big\{\big|\frac{x_1 + \cdots + x_n}{n}\big| \geqq \epsilon \text{for some} n \geqq N\big\} \leqq 2_\varphi^N,$$ where $\varphi = (1 + \epsilon)^{-(1+\epsilon)/2}(1 - \epsilon)^{-(1 - \epsilon)/2}.$ This choice of $\varphi$ is, for every $\epsilon$ between 0 and 1, the best possible. Both results are improvements of results of Blackwell [1], and the methods of proof are somewhat similar.

Citation

Download Citation

Harry Weingarten. "On the Probability of Large Deviations for Sums of Bounded Chance Variables." Ann. Math. Statist. 27 (4) 1170 - 1174, December, 1956. https://doi.org/10.1214/aoms/1177728086

Information

Published: December, 1956
First available in Project Euclid: 28 April 2007

zbMATH: 0073.12503
MathSciNet: MR83831
Digital Object Identifier: 10.1214/aoms/1177728086

Rights: Copyright © 1956 Institute of Mathematical Statistics

Vol.27 • No. 4 • December, 1956
Back to Top