## The Annals of Mathematical Statistics

- Ann. Math. Statist.
- Volume 29, Number 2 (1958), 351-634

### A Distribution-Free Upper Confidence Bound for $\Pr \{Y < X\}$, Based on Independent Samples of $X$ and $Y$

Z. W. Birnbaum and R. C. McCarty

#### Abstract

A solution for the problem of obtaining a distribution-free one-sided confidence interval for $p = \Pr \{Y < X\}$ has been proposed in [1]. At present a numerical procedure is given for computing the sample sizes needed for such a confidence interval with given width and confidence level.

#### Article information

**Source**

Ann. Math. Statist. Volume 29, Number 2 (1958), 558-562.

**Dates**

First available: 27 April 2007

**Permanent link to this document**

http://projecteuclid.org/euclid.aoms/1177706631

**JSTOR**

links.jstor.org

**Digital Object Identifier**

doi:10.1214/aoms/1177706631

**Zentralblatt MATH identifier**

0087.34002

#### Citation

Birnbaum, Z. W.; McCarty, R. C. A Distribution-Free Upper Confidence Bound for $\Pr \{Y < X\}$, Based on Independent Samples of $X$ and $Y$. The Annals of Mathematical Statistics 29 (1958), no. 2, 558--562. doi:10.1214/aoms/1177706631. http://projecteuclid.org/euclid.aoms/1177706631.