The Annals of Applied Statistics

Power-law models for infectious disease spread

Sebastian Meyer and Leonhard Held

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Short-time human travel behaviour can be described by a power law with respect to distance. We incorporate this information in space–time models for infectious disease surveillance data to better capture the dynamics of disease spread. Two previously established model classes are extended, which both decompose disease risk additively into endemic and epidemic components: a spatio-temporal point process model for individual-level data and a multivariate time-series model for aggregated count data. In both frameworks, a power-law decay of spatial interaction is embedded into the epidemic component and estimated jointly with all other unknown parameters using (penalised) likelihood inference. Whereas the power law can be based on Euclidean distance in the point process model, a novel formulation is proposed for count data where the power law depends on the order of the neighbourhood of discrete spatial units. The performance of the new approach is investigated by a reanalysis of individual cases of invasive meningococcal disease in Germany (2002–2008) and count data on influenza in 140 administrative districts of Southern Germany (2001–2008). In both applications, the power law substantially improves model fit and predictions, and is reasonably close to alternative qualitative formulations, where distance and order of neighbourhood, respectively, are treated as a factor. Implementation in the R package surveillance allows the approach to be applied in other settings.

Article information

Ann. Appl. Stat. Volume 8, Number 3 (2014), 1612-1639.

First available in Project Euclid: 23 October 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Power law spatial interaction function infectious disease surveillance stochastic epidemic modelling branching process with immigration multivariate time series of counts spatio-temporal point process


Meyer, Sebastian; Held, Leonhard. Power-law models for infectious disease spread. Ann. Appl. Stat. 8 (2014), no. 3, 1612--1639. doi:10.1214/14-AOAS743.

Export citation


  • Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks. Rev. Modern Phys. 74 47–97.
  • Bartlett, M. S. (1957). Measles periodicity and community size. J. Roy. Statist. Soc. Ser. A 120 48–70.
  • Bivand, R. S., Pebesma, E. and Gómez-Rubio, V. (2013). Applied Spatial Data Analysis with R, 2nd ed. Use R! 10. Springer, New York.
  • Brockmann, D. and Helbing, D. (2013). The hidden geometry of complex, network-driven contagion phenomena. Science 342 1337–1342.
  • Brockmann, D., Hufnagel, L. and Geisel, T. (2006). The scaling laws of human travel. Nature 439 462–465.
  • Brown, L. A. and Holmes, J. (1971). The delimitation of functional regions, nodal regions, and hierarchies by functional distance approaches. J. Reg. Sci. 11 57–72.
  • Brown, L. A. and Horton, F. E. (1970). Functional distance: An operational approach. Geogr. Anal. 2 76–83.
  • Chilès, J.-P. and Delfiner, P. (2012). Geostatistics: Modeling Spatial Uncertainty, 2nd ed. Wiley Series in Probability and Statistics 713. Wiley, Hoboken, NJ.
  • Chis Ster, I. and Ferguson, N. M. (2007). Transmission parameters of the 2001 foot and mouth epidemic in Great Britain. PLoS ONE 2 e502.
  • Cowling, B. J., Fang, V. J., Riley, S., Peiris, J. M. S. and Leung, G. M. (2009). Estimation of the serial interval of influenza. Epidemiology 20 344–347.
  • Czado, C., Gneiting, T. and Held, L. (2009). Predictive model assessment for count data. Biometrics 65 1254–1261.
  • Dawid, A. P. and Sebastiani, P. (1999). Coherent dispersion criteria for optimal experimental design. Ann. Statist. 27 65–81.
  • Deardon, R., Brooks, S. P., Grenfell, B. T., Keeling, M. J., Tildesley, M. J., Savill, N. J., Shaw, D. J. and Woolhouse, M. E. J. (2010). Inference for individual-level models of infectious diseases in large populations. Statist. Sinica 20 239–261.
  • Diggle, P. J. (2006). Spatio-temporal point processes, partial likelihood, foot and mouth disease. Stat. Methods Med. Res. 15 325–336.
  • Diggle, P. J. (2007). Spatio-temporal point processes: Methods and applications. In Statistical Methods for Spatio-Temporal Systems (B. Finkenstädt, L. Held and V. Isham, eds.) 1–45. Chapman & Hall/CRC, Boca Raton, FL.
  • Diggle, P. J., Kaimi, I. and Abellana, R. (2010). Partial-likelihood analysis of spatio-temporal point-process data. Biometrics 66 347–354.
  • Elias, J., Schouls, L. M., van de Pol, I., Keijzers, W. C., Martin, D. R., Glennie, A., Oster, P., Frosch, M., Vogel, U. and van der Ende, A. (2010). Vaccine preventability of meningococcal clone, Greater Aachen region, Germany. Emerg. Infect. Dis. 16 465–472.
  • Eubank, R. L. (2000). Spline regression. In Smoothing and Regression: Approaches, Computation, and Application (M. G. Schimek, ed.) 1–18. Wiley, New York.
  • Fahrmeir, L. and Knorr-Held, L. (2000). Dynamic and semiparametric models. In Smoothing and Regression: Approaches, Computation, and Application (M. G. Schimek, ed.) 513–544. Wiley, New York.
  • Fanshawe, T. R., Diggle, P. J., Rushton, S., Sanderson, R., Lurz, P. W. W., Glinianaia, S. V., Pearce, M. S., Parker, L., Charlton, M. and Pless-Mulloli, T. (2008). Modelling spatio-temporal variation in exposure to particulate matter: A two-stage approach. Environmetrics 19 549–566.
  • Farrington, C. P., Andrews, N. J., Beale, A. D. and Catchpole, M. A. (1996). A statistical algorithm for the early detection of outbreaks of infectious disease. J. Roy. Statist. Soc. Ser. A 159 547–563.
  • Fuhrmann, C. (2010). The effects of weather and climate on the seasonality of influenza: What we know and what we need to know. Geography Compass 4 718–730.
  • Geilhufe, M., Held, L., Skrøvseth, S. O., Simonsen, G. S. and Godtliebsen, F. (2014). Power law approximations of movement network data for modeling infectious disease spread. Biom. J. 56 363–382.
  • Gibson, G. J. (1997). Markov chain Monte Carlo methods for fitting spatiotemporal stochastic models in plant epidemiology. J. R. Stat. Soc. Ser. C. Appl. Stat. 46 215–233.
  • Gneiting, T., Balabdaoui, F. and Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 243–268.
  • Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. J. Amer. Statist. Assoc. 102 359–378.
  • Gneiting, T. and Schlather, M. (2004). Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev. 46 269–282 (electronic).
  • Gutenberg, B. and Richter, C. F. (1944). Frequency of earthquakes in California. Bull. Seismol. Soc. Amer. 34 185–188.
  • Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. Biometrika 58 83–90.
  • Held, L., Höhle, M. and Hofmann, M. (2005). A statistical framework for the analysis of multivariate infectious disease surveillance counts. Stat. Model. 5 187–199.
  • Held, L. and Paul, M. (2012). Modeling seasonality in space–time infectious disease surveillance data. Biom. J. 54 824–843.
  • Held, L., Hofmann, M., Höhle, M. and Schmid, V. (2006). A two-component model for counts of infectious diseases. Biostatistics 7 422–437.
  • Herzog, S. A., Paul, M. and Held, L. (2011). Heterogeneity in vaccination coverage explains the size and occurrence of measles epidemics in German surveillance data. Epidemiol. Infect. 139 505–515.
  • Höhle, M. (2009). Additive-multiplicative regression models for spatio-temporal epidemics. Biom. J. 51 961–978.
  • Höhle, M., Meyer, S. and Paul, M. (2014). surveillance: Temporal and spatio-temporal modeling and monitoring of epidemic phenomena. R package version 1.8-0.
  • Höhle, M. and Paul, M. (2008). Count data regression charts for the monitoring of surveillance time series. Comput. Statist. Data Anal. 52 4357–4368.
  • Höhle, M., Paul, M. and Held, L. (2009). Statistical approaches to the monitoring and surveillance of infectious diseases for veterinary public health. Prev. Vet. Med. 91 2–10.
  • Hulth, A., Rydevik, G. and Linde, A. (2009). Web queries as a source for syndromic surveillance. PLoS ONE 4 e4378.
  • Josseran, L., Nicolau, J., Caillère, N., Astagneau, P. and Brücker, G. (2006). Syndromic surveillance based on emergency department activity and crude mortality: Two examples. Eurosurveillance 11 225–229.
  • Keeling, M. J. and Rohani, P. (2002). Estimating spatial coupling in epidemiological systems: A mechanistic approach. Ecol. Lett. 5 20–29.
  • Keeling, M. J. and Rohani, P. (2008). Modeling Infectious Diseases in Humans and Animals. Princeton Univ. Press, Princeton, NJ.
  • Keeling, M. J., Woolhouse, M. E. J., Shaw, D. J., Matthews, L., Chase-Topping, M., Haydon, D. T., Cornell, S. J., Kappey, J., Wilesmith, J. and Grenfell, B. T. (2001). Dynamics of the 2001 UK foot and mouth epidemic: Stochastic dispersal in a heterogeneous landscape. Science 294 813–817.
  • Lawson, A. B. and Leimich, P. (2000). Approaches to the space–time modelling of infectious disease behaviour. IMA J. Math. Appl. Med. Biol. 17 1–13.
  • Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.-L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D. and Alstyne, M. V. (2009). Social science. Computational social science. Science 323 721–723.
  • Le Comber, S., Rossmo, D. K., Hassan, A., Fuller, D. and Beier, J. (2011). Geographic profiling as a novel spatial tool for targeting infectious disease control. Int. J. Health Geogr. 10 35.
  • Liljeros, F., Edling, C. R., Amaral, L. A. N., Stanley, H. E. and Aberg, Y. (2001). The web of human sexual contacts. Nature 411 907–908.
  • Lomax, K. S. (1954). Business failures: Another example of the analysis of failure data. J. Amer. Statist. Assoc. 49 847–852.
  • Meyer, S. (2014). polyCub: Cubature over polygonal domains. R package version 0.4-3.
  • Meyer, S., Elias, J. and Höhle, M. (2012). A space–time conditional intensity model for invasive meningococcal disease occurrence. Biometrics 68 607–616.
  • Meyer, S. and Held, L. (2014). Supplement to “Power-law models for infectious disease spread.” DOI:10.1214/14-AOAS743SUPPB.
  • Meyer, S., Held, L. and Höhle, M. (2014). Spatio-temporal analysis of epidemic phenomena using the R package surveillance. J. Stat. Softw. To appear.
  • Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M., Salmaso, S., Tomba, G. S., Wallinga, J., Heijne, J., Sadkowska-Todys, M., Rosinska, M. and Edmunds, W. J. (2008). Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 5 e74.
  • Newman, M. E. J. (2005). Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46 323–351.
  • Noufaily, A., Enki, D. G., Farrington, P., Garthwaite, P., Andrews, N. and Charlett, A. (2013). An improved algorithm for outbreak detection in multiple surveillance systems. Stat. Med. 32 1206–1222.
  • Ogata, Y. (1998). Space–time point-process models for earthquake occurrences. Ann. Inst. Statist. Math. 50 379–402.
  • Pareto, V. (1896). Cours D’Économie Politique 1. F. Rouge, Lausanne.
  • Paul, M. and Held, L. (2011). Predictive assessment of a non-linear random effects model for multivariate time series of infectious disease counts. Stat. Med. 30 1118–1136.
  • Paul, M., Held, L. and Toschke, A. M. (2008). Multivariate modelling of infectious disease surveillance data. Stat. Med. 27 6250–6267.
  • Pinto, C. M. A., Mendes Lopes, A. and Machado, J. A. T. (2012). A review of power laws in real life phenomena. Commun. Nonlinear Sci. Numer. Simul. 17 3558–3578.
  • R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Ratti, C., Sobolevsky, S., Calabrese, F., Andris, C., Reades, J., Martino, M., Claxton, R. and Strogatz, S. H. (2010). Redrawing the map of Great Britain from a network of human interactions. PLoS ONE 5 e14248.
  • Robert Koch Institute (2009). SurvStat@RKI. Available at Queried on March 6, 2009.
  • Rossmo, D. K. (2000). Geographic Profiling. CRC Press, Boca Raton.
  • Schrödle, B., Held, L. and Rue, H. (2012). Assessing the impact of a movement network on the spatiotemporal spread of infectious diseases. Biometrics 68 736–744.
  • Sommariva, A. and Vianello, M. (2007). Product Gauss cubature over polygons based on Green’s integration formula. BIT 47 441–453.
  • Soubeyrand, S., Held, L., Höhle, M. and Sache, I. (2008). Modelling the spread in space and time of an airborne plant disease. J. R. Stat. Soc. Ser. C. Appl. Stat. 57 253–272.
  • Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46 234–240.
  • Truscott, J., Fraser, C., Cauchemez, S., Meeyai, A., Hinsley, W., Donnelly, C. A., Ghani, A. and Ferguson, N. (2012). Essential epidemiological mechanisms underpinning the transmission dynamics of seasonal influenza. J. R. Soc. Interface 9 304–312.
  • Viboud, C., Bjørnstad, O. N., Smith, D. L., Simonsen, L., Miller, M. A. and Grenfell, B. T. (2006). Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 312 447–451.
  • Wei, W. and Held, L. (2014). Calibration tests for count data. TEST. DOI:10.1007/s11749-014-0380-8.
  • Willem, L., Kerckhove, K. V., Chao, D. L., Hens, N. and Beutels, P. (2012). A nice day for an infection? Weather conditions and social contact patterns relevant to influenza transmission. PLoS ONE 7 e48695.
  • Xie, Y. (2013). animation: An R package for creating animations and demonstrating statistical methods. J. Stat. Softw. 53 1–27.
  • Zipf, G. K. (1949). Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology. Addison-Wesley Press, Cambridge, MA.

Supplemental materials

  • Supplementary material A: Animations of the IMD and influenza epidemics. •Observed evolution of the IMD and influenza epidemics. •Simulated counts from various models for the 2008 influenza wave. •Weekly mean PIT histograms for these predictions.
  • Supplementary material B: Inference details, integration of isotropic functions over polygons, and additional figures and tables. •Details on likelihood inference for both models. •Integration of radially symmetric functions over polygonal domains. •Additional figures and tables of the power-law models for invasive meningococcal disease and influenza.