The Annals of Applied Statistics

Estimation in the partially observed stochastic Morris–Lecar neuronal model with particle filter and stochastic approximation methods

Susanne Ditlevsen and Adeline Samson

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Parameter estimation in multidimensional diffusion models with only one coordinate observed is highly relevant in many biological applications, but a statistically difficult problem. In neuroscience, the membrane potential evolution in single neurons can be measured at high frequency, but biophysical realistic models have to include the unobserved dynamics of ion channels. One such model is the stochastic Morris–Lecar model, defined by a nonlinear two-dimensional stochastic differential equation. The coordinates are coupled, that is, the unobserved coordinate is nonautonomous, the model exhibits oscillations to mimic the spiking behavior, which means it is not of gradient-type, and the measurement noise from intracellular recordings is typically negligible. Therefore, the hidden Markov model framework is degenerate, and available methods break down. The main contributions of this paper are an approach to estimate in this ill-posed situation and nonasymptotic convergence results for the method. Specifically, we propose a sequential Monte Carlo particle filter algorithm to impute the unobserved coordinate, and then estimate parameters maximizing a pseudo-likelihood through a stochastic version of the Expectation–Maximization algorithm. It turns out that even the rate scaling parameter governing the opening and closing of ion channels of the unobserved coordinate can be reasonably estimated. An experimental data set of intracellular recordings of the membrane potential of a spinal motoneuron of a red-eared turtle is analyzed, and the performance is further evaluated in a simulation study.

Article information

Ann. Appl. Stat. Volume 8, Number 2 (2014), 674-702.

First available in Project Euclid: 1 July 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Sequential Monte Carlo diffusions pseudo likelihood Stochastic Approximation Expectation Maximization motoneurons conductance-based neuron models membrane potential


Ditlevsen, Susanne; Samson, Adeline. Estimation in the partially observed stochastic Morris–Lecar neuronal model with particle filter and stochastic approximation methods. Ann. Appl. Stat. 8 (2014), no. 2, 674--702. doi:10.1214/14-AOAS729.

Export citation


  • Aït-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach. Econometrica 70 223–262.
  • Andrieu, C., Doucet, A. and Punskaya, E. (2001). Sequential Monte Carlo methods for optimal filtering. In Sequential Monte Carlo Methods in Practice 79–95. Springer, New York.
  • Berg, R. W., Alaburda, A. and Hounsgaard, J. (2007). Balanced inhibition and excitation drive spike activity in spinal half-centers. Science 315 390–393.
  • Berg, R. W. and Ditlevsen, S. (2013). Synaptic inhibition and excitation estimated via the time constant of membrane potential fluctuations. J. Neurophys. 110 1021–1034.
  • Berg, R. W., Ditlevsen, S. and Hounsgaard, J. (2008). Intense synaptic activity enhances temporal resolution in spinal motoneurons. PLoS ONE 3 e3218.
  • Beskos, A., Papaspiliopoulos, O., Roberts, G. O. and Fearnhead, P. (2006). Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 333–382.
  • Borg-Graham, L. J., Monier, C. and Frégnac, Y. (1998). Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393 369–373.
  • Cappé, O., Moulines, E. and Rydén, T. (2005). Inference in Hidden Markov Models. Springer, New York.
  • Delyon, B., Lavielle, M. and Moulines, E. (1999). Convergence of a stochastic approximation version of the EM algorithm. Ann. Statist. 27 94–128.
  • Del Moral, P., Jacod, J. and Protter, P. (2001). The Monte-Carlo method for filtering with discrete-time observations. Probab. Theory Related Fields 120 346–368.
  • Del Moral, P. and Miclo, L. (2000). Branching and interacting particle systems approximations of Feynman–Kac formulae with applications to non-linear filtering. In Séminaire de Probabilités, XXXIV. Lecture Notes in Math. 1729 1–145. Springer, Berlin.
  • Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 1–38.
  • Ditlevsen, S. and Greenwood, P. (2013). The Morris–Lecar neuron model embeds a leaky integrate-and-fire model. J. Math. Biol. 67 239–259.
  • Douc, R., Garivier, A., Moulines, E. and Olsson, J. (2011). Sequential Monte Carlo smoothing for general state space hidden Markov models. Ann. Appl. Probab. 21 2109–2145.
  • Doucet, A., de Freitas, N. and Gordon, N. (2001). An introduction to sequential Monte Carlo methods. In Sequential Monte Carlo Methods in Practice 3–14. Springer, New York.
  • Doucet, A., Godsill, S. and Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filterin. Stat. Comput. 10 197–208.
  • Durham, G. B. and Gallant, A. R. (2002). Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J. Bus. Econom. Statist. 20 297–338. With comments and a reply by the authors.
  • Elerian, O., Chib, S. and Shephard, N. (2001). Likelihood inference for discretely observed nonlinear diffusions. Econometrica 69 959–993.
  • Eraker, B. (2001). MCMC analysis of diffusion models with application to finance. J. Bus. Econom. Statist. 19 177–191.
  • Fearnhead, P., Papaspiliopoulos, O. and Roberts, G. O. (2008). Particle filters for partially observed diffusions. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 755–777.
  • Gerstner, W. and Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge Univ. Press, Cambridge.
  • Gobet, E. and Labart, C. (2008). Sharp estimates for the convergence of the density of the Euler scheme in small time. Electron. Commun. Probab. 13 352–363.
  • Golightly, A. and Wilkinson, D. J. (2006). Bayesian sequential inference for nonlinear multivariate diffusions. Stat. Comput. 16 323–338.
  • Golightly, A. and Wilkinson, D. J. (2008). Bayesian inference for nonlinear multivariate diffusion models observed with error. Comput. Statist. Data Anal. 52 1674–1693.
  • Gordon, N. J., Salmond, D. J. and Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings-F 140 107–113.
  • Huys, Q. J. M., Ahrens, M. and Paninski, L. (2006). Efficient estimation of detailed single-neuron models. J. Neurophysiol. 96 872–890.
  • Huys, Q. J. M. and Paninski, L. (2009). Smoothing of, and parameter estimation from, noisy biophysical recordings. PLoS Comput. Biol. 5 e1000379, 16.
  • Ionides, E. L., Bhadra, A., Atchadé, Y. and King, A. (2011). Iterated filtering. Ann. Statist. 39 1776–1802.
  • Jahn, P., Berg, R. W., Hounsgaard, J. and Ditlevsen, S. (2011). Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process. J. Comput. Neurosci. 31 563–579.
  • Jensen, A. C., Ditlevsen, S., Kessler, M. and Papaspiliopoulos, O. (2012). Markov chain Monte Carlo approach to parameter estimation in the FitzHugh–Nagumo model. Physical Review E 86 041114.
  • Kalogeropoulos, K. (2007). Likelihood-based inference for a class of multivariate diffusions with unobserved paths. J. Statist. Plann. Inference 137 3092–3102.
  • Kloeden, P. and Neuenkirch, A. (2012). Convergence of numerical methods for stochastic differential equations in mathematical finance. Available at arXiv:1204.6620v1 [math.NA].
  • Künsch, H. R. (2005). Recursive Monte Carlo filters: Algorithms and theoretical analysis. Ann. Statist. 33 1983–2021.
  • Liu, J. S. and Chen, R. (1998). Sequential Monte Carlo methods for dynamic systems. J. Amer. Statist. Assoc. 93 1032–1044.
  • Longtin, A. (2013). Neuronal noise. Scholarpedia 8 1618.
  • Monier, C., Fournier, J. and Frégnac, Y. (2008). In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices. J. Neurosci. Methods 169 323–365.
  • Morris, C. and Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35 193–213.
  • Pedersen, A. R. (1995). A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand. J. Stat. 22 55–71.
  • Pokern, Y., Stuart, A. M. and Wiberg, P. (2009). Parameter estimation for partially observed hypoelliptic diffusions. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 49–73.
  • Pospischil, M., Piwkowska, Z., Bal, T. and Destexhe, A. (2009). Extracting synaptic conductances from single membrane potential traces. Neurosci. 158 545–552.
  • Rinzel, J. and Ermentrout, G. B. (1989). Methods in Neural Modeling, Chapter Analysis of Neural Excitability and Oscillations. MIT Press, Cambridge, MA.
  • Roberts, G. O. and Stramer, O. (2001). On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm. Biometrika 88 603–621.
  • Rudolph, M., Piwkowska, Z., Badoual, M., Bal, T. and Destexhe, A. (2004). A method to estimate synaptic conductances from membrane potential fluctuations. J. Neurophysiol. 91 2884–2896.
  • Samson, A. and Thieullen, M. (2012). A contrast estimator for completely or partially observed hypoelliptic diffusion. Stochastic Process. Appl. 122 2521–2552.
  • Sørensen, H. (2004). Parametric inference for diffusion processes observed at discrete points in time: A survey. Int. Stat. Rev. 72 337–354.
  • Sørensen, M. (2012). Estimating functions for diffusion-type processes. In Statistical Methods for Stochastic Differential Equations. Monogr. Statist. Appl. Probab. 124 1–107. CRC Press, Boca Raton, FL.
  • Tateno, T. and Pakdaman, K. (2004). Random dynamics of the Morris–Lecar neural model. Chaos 14 511–530.