The Annals of Applied Statistics

Maximum likelihood estimation of mark–recapture–recovery models in the presence of continuous covariates

Roland Langrock and Ruth King

Full-text: Access denied (no subscription detected)In 2007, access to the Annals of Applied Statistics was open. Beginning in 2008, you must hold a subscription or be a member of the IMS to view the full journal. For more information on subscribing, please visit: http://imstat.org/orders.If you are already an IMS member, you may need to update your Euclid profile following the instructions here: http://imstat.org/publications/eaccess.htm.

Abstract

We consider mark–recapture–recovery (MRR) data of animals where the model parameters are a function of individual time-varying continuous covariates. For such covariates, the covariate value is unobserved if the corresponding individual is unobserved, in which case the survival probability cannot be evaluated. For continuous-valued covariates, the corresponding likelihood can only be expressed in the form of an integral that is analytically intractable and, to date, no maximum likelihood approach that uses all the information in the data has been developed. Assuming a first-order Markov process for the covariate values, we accomplish this task by formulating the MRR setting in a state-space framework and considering an approximate likelihood approach which essentially discretizes the range of covariate values, reducing the integral to a summation. The likelihood can then be efficiently calculated and maximized using standard techniques for hidden Markov models. We initially assess the approach using simulated data before applying to real data relating to Soay sheep, specifying the survival probability as a function of body mass. Models that have previously been suggested for the corresponding covariate process are typically of the form of diffusive random walks. We consider an alternative nondiffusive AR(1)-type model which appears to provide a significantly better fit to the Soay sheep data.

Article information

Source
Ann. Appl. Stat. Volume 7, Number 3 (2013), 1709-1732.

Dates
First available in Project Euclid: 3 October 2013

Permanent link to this document
http://projecteuclid.org/euclid.aoas/1380804813

Digital Object Identifier
doi:10.1214/13-AOAS644

Mathematical Reviews number (MathSciNet)
MR3127965

Citation

Langrock, Roland; King, Ruth. Maximum likelihood estimation of mark–recapture–recovery models in the presence of continuous covariates. The Annals of Applied Statistics 7 (2013), no. 3, 1709--1732. doi:10.1214/13-AOAS644. http://projecteuclid.org/euclid.aoas/1380804813.


Export citation

References

  • Barker, R. J. (1997). Joint modelling of live recapture, tag-resight and tag-recovery data. Biometrics 53 666–677.
  • Bartolucci, F. and De Luca, G. (2003). Likelihood-based inference for asymmetric stochastic volatility models. Comput. Statist. Data Anal. 42 445–449.
  • Bonner, S. J. (2013). Implementing the trinomial mark–recapture–recovery model in program MARK. Methods in Ecology and Evolution 4 95–98.
  • Bonner, S. J., Morgan, B. J. T. and King, R. (2010). Continuous covariates in mark–recapture–recovery analysis: A comparison of methods. Biometrics 66 1256–1265.
  • Bonner, S. J. and Schwarz, C. J. (2006). An extension of the Cormack–Jolly–Seber model for continuous covariates with application to Microtus pennsylvanicus. Biometrics 62 142–149.
  • Brooks, S. P., Catchpole, E. A. and Morgan, B. J. T. (2000). Bayesian animal survival estimation. Statist. Sci. 15 357–376.
  • Brownie, C., Hines, J. E., Nichols, J. D., Pollock, K. H. and Hestbeck, J. B. (1993). Capture–recapture studies for multiple strata including non-Markovian transitions. Biometrics 49 1173–1187.
  • Catchpole, E. A., Morgan, B. J. T. and Tavecchia, G. (2008). A new method for analysing discrete life history data with missing covariate values. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 445–460.
  • Catchpole, E. A., Morgan, B. J. T., Coulson, T. N., Freeman, S. N. and Albon, S. D. (2000). Factors influencing Soay sheep survival. J. R. Stat. Soc. Ser. C. Appl. Stat. 49 453–472.
  • Catchpole, E. A., Freeman, S. N., Morgan, B. J. T. and Nash, W. J. (2001). Abalone I: Analyzing mark–recapture–recovery data incorporating growth and delayed recovery. Biometrics 57 469–477.
  • Clutton-Brock, T. H. and Pemberton, J. M. (2004). Soay Sheep: Dynamics and Selection in an Island Population. Cambridge Univ. Press, Cambridge.
  • Coulson, T. N., Catchpole, E. A., Albon, S. D., Morgan, B. J. T., Pemberton, J. M., Clutton-Brock, T. H., Crawley, M. J. and Grenfell, B. T. (2001). Age, sex, density, winter weather, and population crashes in Soay sheep. Science 292 1528–1531.
  • Durbin, J. and Koopman, S. J. (1997). Monte Carlo maximum likelihood estimation for non-Gaussian state space models. Biometrika 84 669–684.
  • Fridman, M. and Harris, L. (1998). A maximum likelihood approach for non-Gaussian stochastic volatility models. J. Bus. Econom. Statist. 16 284–291.
  • Gimenez, O., Crainiceanu, C., Barbraud, C., Jenouvrier, S. and Morgan, B. J. T. (2006). Semiparametric regression in capture–recapture modeling. Biometrics 62 691–698.
  • Gimenez, O., Rossi, V., Choquet, R., Dehais, C., Doris, B., Varella, H., Vila, J. P. and Pradel, R. (2007). State-space modelling of data on marked individuals. Ecological Modelling 206 431–438.
  • James, I. R. (1991). Estimation of von Bertalanffy growth curve parameters from recapture data. Biometrics 47 1519–1530.
  • King, R. (2012). A review of Bayesian state-space modelling of capture–recapture–recovery data. Interface Focus 2 190–204.
  • King, R. and Brooks, S. P. (2002). Model selection for integrated recovery/recapture data. Biometrics 58 841–851.
  • King, R. and Brooks, S. P. (2003). Survival and spatial fidelity of mouflon: The effect of location, age and sex. J. Agric. Biol. Environ. Stat. 8 486–531.
  • King, R., Brooks, S. P. and Coulson, T. (2008). Analyzing complex capture–recapture data in the presence of individual and temporal covariates and model uncertainty. Biometrics 64 1187–1195.
  • King, R., Brooks, S. P., Morgan, B. J. T. and Coulson, T. (2006). Factors influencing Soay sheep survival: A Bayesian analysis. Biometrics 62 211–220.
  • King, R., Morgan, B. J. T., Gimenez, O. and Brooks, S. P. (2009). Bayesian Analysis for Population Ecology. CRC Press, Boca Raton, FL.
  • Langrock, R. (2011). Some applications of nonlinear and non-Gaussian state-space modelling by means of hidden Markov models. J. Appl. Stat. 38 2955–2970.
  • Langrock, R. and King, R. (2013). Supplement to “Maximum likelihood estimation of mark–recapture–recovery models in the presence of continuous covariates.” DOI:10.1214/13-AOAS644SUPP.
  • Langrock, R., MacDonald, I. L. and Zucchini, W. (2012). Some nonstandard stochastic volatility models and their estimation using structured hidden Markov models. Journal of Empirical Finance 19 147–161.
  • Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D. and Morales, J. M. (2012). Flexible and practical modeling of animal telemetry data: Hidden Markov models and extensions. Ecology 93 2336–2342.
  • Nichols, J. D., Sauer, J. R., Pollock, K. H. and Hestbeck, J. B. (1992). Estimating transition probabilities for stage-based population projection matrices using capture–recapture data. Ecology 73 306–312.
  • North, P. M. and Morgan, B. J. T. (1979). Modelling heron survival using weather data. Biometrics 35 667–681.
  • Pollock, K. H. (2002). The use of auxiliary variables in capture–recapture modelling: An overview. J. Appl. Stat. 29 85–102.
  • Pradel, R. (2005). Multievent: An extension of multistate capture–recapture models to uncertain states. Biometrics 61 442–447.
  • Royle, J. A. (2008). Modeling individual effects in the Cormack–Jolly–Seber model: A state-space formulation. Biometrics 64 364–370, 664.
  • Schliehe-Diecks, S., Kappeler, P. M. and Langrock, R. (2012). On the application of mixed hidden Markov models to multiple behavioural time series. Interface Focus 2 180–189.
  • Schofield, M. R. and Barker, R. J. (2008). A unified capture–recapture framework. J. Agric. Biol. Environ. Stat. 13 458–477.
  • Schofield, M. R. and Barker, R. J. (2011). Full open population capture–recapture models with individual covariates. J. Agric. Biol. Environ. Stat. 16 253–268.
  • Schwarz, C. J., Schweigert, J. F. and Arnason, A. N. (1993). Estimating migration rates using tag-recovery data. Biometrics 49 177–193.
  • Schwarz, C. J. and Seber, G. A. F. (1999). Estimating animal abundance: Review III. Statist. Sci. 14 427–456.
  • Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. J. Amer. Statist. Assoc. 82 528–540.
  • Zucchini, W. and MacDonald, I. L. (2009). Hidden Markov Models for Time Series: An Introduction Using R. Monographs on Statistics and Applied Probability 110. Chapman and Hall/CRC, Boca Raton, FL.
  • Zucchini, W., Raubenheimer, D. and MacDonald, I. L. (2008). Modeling time series of animal behavior by means of a latent-state model with feedback. Biometrics 64 807–815.

Supplemental materials

  • Supplementary material: R code for model fitting. Sample R code for simulating MRR data and fitting the corresponding model using the HMM-based approach (with MRR model as described in Section 3).